Description
There are n people standing in a line to take photo. But for some reasons ,there are some limits on their positions. For example, i must stand on j’s right, marked for (i, j). Now, giving you the n people and those limits, please tell me the number of the legal permutation.
Input
There are multiple test cases. For each test:
The first line contains one positive integer n (1<=n<=16), indicating the number of people. Then following there are n lines, each line containing n integers. The element at ith row and jth column is either 1 or 0; if the element is 1, it represents the limit (i, j); You can assume that any pair of (i, j) is bound to be 0 if i is equal to j.
Processed to the end of file.
Output
For each test case, output the number of legal permutation on one line.
Sample Input
Sample Output
状态dp,类似于棋盘问题,加上一些限制,状态i中1的个数表示已经安排了几个人,并且放在了哪些行,
// http://acm.cug.edu.cn/JudgeOnline/problem.php?id=1437
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
ll dp[1<<16];
int n;
int map[17][17];
int num1[17],num2[17],num3[17],num4[17];
inline int getone(int i)
{
int cnt=0;
while(i) cnt+=i%2,i>>=1;
return cnt;
}
int main()
{
while(~scanf("%d",&n))
{
memset(num1,0,sizeof(num1));
memset(num3,0,sizeof(num3));
memset(num4,0,sizeof(num4));
memset(num2,0,sizeof(num2));
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
scanf("%d",&map[i][j]);
}
int tag=1;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(i!=j)
{
if(map[i][j]&&map[j][i]) tag=0;break;
}
if(!tag)
{
puts("0");
continue;
}
for(int i=0;i<n;i++)
{
for(int j=0;j<i;j++)
{
if(map[j][i]) num1[i]++;//在0~i人中有多少个人必须在i的右边
if(map[i][j]) num2[i]++;//在0~i人中有多少个人必须在i的左边
}
}
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(map[j][i]) num3[i]++;//在i+1~n-1人中。。。。。
if(map[i][j]) num4[i]++;//。。。。
}
}
int all=(1<<n)-1;
memset(dp,0,sizeof(dp));
dp[0]=1;
for(int i=1;i<=all;i++)
{
int rr=getone(i)-1;
ll ans=0;
for(int j=0;j<n;j++)
{
if(i&(1<<j))
{
int l=0,r=0,ll=0,rrr=0;
for(int k=0;k<j;k++)
(i&(1<<k))?l++:ll++;
for(int k=j+1;k<n;k++)
(i&(1<<k))?r++:rrr++;
if(r<num1[rr]) continue;
if(l<num2[rr]) continue;
if(rrr<num3[rr]) continue;
if(ll<num4[rr]) continue;
ans+=dp[i&(~(1<<j))];
}
}
dp[i]=ans;
}
printf("%lld\n",dp[all]);
}
return 0;
}