用于求解同余方程组
x = ri (mod ai) 1<=i<=n
更一般的,我们来考虑如何解决ai不互质的情况
我们可以用合并方程组的方法来解决此类问题。
x = r1 (mod a1)
x = r2 (mod a2)
我们可以将上述方程写成另一种形式
x = k1*a1+r1
x = k2*a2+r2
我们可以得到
k1*a1+r1=k2*a2+r2
即
k1*a1 = r2-r1 (mod a2)
用扩展欧几里得可以求出k1
(程序中先默认求出k1*a1 = gcd(a1,a2)(mod a2) 的解,再求出k1 = k1'*( (r2-r1)/gcd ),过去这地方一直没看懂,擦擦擦 )
那么我么可以得到 x,方程组可以被合并成
x = (k1*a1+r1) (mod a1*a2/gcd )
不断合并即可求解
献上入门题
hdu3579
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
int Case,n;
LL m1,r1,m2,r2,x,y;
LL m[100],r[100];
LL exgcd(LL a,LL b){
if (b==0){
x = 1; y = 0;
return a;
}
LL ret = exgcd(b,a%b);
LL tmp = x;
x = y; y = tmp-(a/b)*y;
return ret;
}
int main(){
scanf("%d",&Case);
for (int T=1;T<=Case;T++){
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%I64d",&m[i]);
for (int i=1;i<=n;i++)
scanf("%I64d",&r[i]);
m1 = m[1]; r1 = r[1];
bool flag = 0;
for (int i=2;i<=n;i++){
m2 = m[i];
r2 = r[i];
int d = exgcd(m1,m2);
int c = r2-r1;
if (c%d){
flag = 1;
break;
}
int t = m2/d;
x = (x*(c/d)%t+t)%t;
r1 = x*m1+r1;
m1 = m1*m2/d;
}
if (flag) {printf("Case %d: -1\n",T);continue;}
if (r1<=0) r1+=m1;
printf("Case %d: %I64d\n",T,r1);
}
return 0;
}
poj2891
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
int n;
LL x,y,m1,m2,r1,r2;
LL exgcd(LL a,LL b){
if (b==0){
x = 1; y = 0;
return a;
}
LL ret = exgcd(b,a%b);
LL tmp = x;
x = y; y = tmp-(a/b)*y;
return ret;
}
int main(){
while (~scanf("%d",&n)){
scanf("%lld%lld",&m1,&r1);
bool flag = 0;
for (int i=1;i<n;i++){
scanf("%lld%lld",&m2,&r2);
if (flag) continue;
LL d = exgcd(m1,m2);
LL c = r2-r1;
if (c%d) {flag=1;continue;}
LL t = m2/d;
x = (x*(c/d)%t+t)%t;
r1 = m1*x+r1;
m1 = m1*m2/d;
}
if (flag) puts("-1");
else printf("%lld\n",r1);
}
return 0;
}