UVA 216-Getting in Line
题目大意:给出坐标,求出全部连起来的最短路,每个连线长度要另外加16
解题思路:可以列子集,也可以回溯,子集因为这题情况少可以用,回溯则是比较通用,一下是用回溯的代码
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
using namespace std;
int n;
double place[100][2];
int flag[100];
int m;
double mi;
int team[100];
int team2[100];
void dfs(double dis) {
if(m == n) {
if(mi == -1 || dis < mi) {
for(int i = 0; i < n; i++)
team[i] = team2[i];
mi = dis;
}
return;
}
if(mi != -1 && dis > mi)
return;
for(int i = 0; i < n; i++) {
if(flag[i] == 1)
continue;
team2[m] = i;
int x = team2[m-1];
int y = team2[m];
m++;
flag[i] = 1;
double p = dis + 16.0 + sqrt(pow((place[x][0]-place[y][0]),2) + pow((place[x][1]-place[y][1]),2) * 1.0);
dfs(p);
m--;
flag[i] = 0;
}
}
int main() {
int x = 0;
while(cin >> n && n) {
x++;
memset(flag, 0, sizeof(flag));
memset(team, 0, sizeof(team2));
memset(place, 0, sizeof(place));
for(int i = 0; i < n; i++)
cin >> place[i][0] >> place[i][1];
printf("**********************************************************\n");
printf("Network #%d\n", x);
m = 1;
mi = -1;
for(int i = 0; i < n; i++) {
flag[i] = 1;
team2[0] = i;
dfs(0);
flag[i] = 0;
}
for(int j = 0; j < n - 1; j++) {
int i = team[j];
int k = team[j+1];
double d = 16.0 + sqrt(pow((place[i][0] - place[k][0]), 2) + pow((place[i][1] - place[k][1]), 2));
printf("Cable requirement to connect (%.0lf,%.0lf) to (%.0lf,%.0lf) is %.2lf feet.\n", place[i][0], place[i][1], place[k][0], place[k][1], d);
}
printf("Number of feet of cable required is %.2lf.\n", mi);
}
return 0;
}

本文介绍了解决UVA216-GettinginLine问题的方法,该问题要求找出连接所有坐标的最短路径,并在每条边额外加上16单位长度。采用回溯算法实现,通过不断尝试各种可能的连接方式来找到最优解。
509

被折叠的 条评论
为什么被折叠?



