[贪心][51nod] 最高的奖励

1163 最高的奖励

有N个任务,每个任务有一个最晚结束时间以及一个对应的奖励。在结束时间之前完成该任务,就可以获得对应的奖励。完成每一个任务所需的时间都是1个单位时间。有时候完成所有任务是不可能的,因为时间上可能会有冲突,这需要你来取舍。求能够获得的最高奖励。

输入

第1行:一个数N,表示任务的数量(2 <= N <= 50000)
第2 - N + 1行,每行2个数,中间用空格分隔,表示任务的最晚结束时间E[i]以及对应的奖励W[i]。(1 <= E[i] <= 10^9,1 <= W[i] <= 10^9)

输出

输出能够获得的最高奖励。

输入样例

7
4 20
2 60
4 70
3 40
1 30
4 50
6 10

输出样例

230

解法:

按任务结束时间排序, O(n)向后扫描, 维护一个长度为当前可选的总任务量的最优解

则有, 若新任务比当前总任务还靠后, 则直接添加, 对任务不影响。

当前任务结束时间和当前总任务量相同时, 则必有可以替换掉当前最优解中的最小值达到更优。(因为此任务替换于当前最优解中的任何任务都满足题意)

因此最终求得最优解

可以用优先队列维护 总复杂的O(nlongn)

typedef long long ll;

const int MAXN = 1e6 + 10;

struct node
{
    int endtime, val;
}arr[MAXN];

bool cmp(node a, node b)
{
    return a.endtime < b.endtime;
}

int main()
{
    //ios::sync_with_stdio(false);
    //cin.tie(0);     cout.tie(0);
    //freopen("D://test.in", "r", stdin);
    //freopen("D://test.out", "w", stdout);

    int n;

    cin>>n;

    for(int i = 0; i < n; i++)
    {
        cin >> arr[i].endtime >> arr[i].val;
    }

    sort(arr, arr + n, cmp);

    priority_queue <ll, std::vector<ll>, greater<ll> > PQ;

    int len = 0;

    for(int i = 0; i < n; i++)
    {
        if(arr[i].endtime > len)
        {
            PQ.push(arr[i].val);
            ++len;
        }

        else
        {
            if(arr[i].val > PQ.top())
            {
                PQ.pop();

                PQ.push(arr[i].val);
            }
        }
    }

    ll ans = 0;

    while(!PQ.empty())
    {
        ans += PQ.top();
        PQ.pop();
    }

    cout<<ans<<'\n';


    
    return 0;
}

 

 

题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行列组合**: - 由于 `N` `M` 的最大值为 8,因此可以枚举所有可能的行组合列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行列需要修改,并且注意行列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行列的枚举组合以减少计算时间? 2. 在计算行列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值