对于差分约束的题目,重于挖掘题目暗含的约束条件, 当图存在负环时无解
1.最大化xn-x1 正常建边,跑最短路
2.最小化xn-x1 反向建边,跑最长路
两类题型:
1.明显给出差分约束关系
2.区间类型的查分约束,需要进行转换,一般考虑前缀和
3.都需要挖掘隐藏的查分约束信息,一般考虑,差值大于等于0,或者某两个值相等
//#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a, b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define DNF 0x7f
#define DBG printf("this is a input\n")
#define fi first
#define se second
#define mk(a, b) make_pair(a,b)
#define p_queue priority_queue
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b) {
return a / gcd(a, b) * b;
}
//前向星
int n, m, l;
int head[50005], cnt;
struct e{
int t, next;
int w;
}edge[100005];
void add(int f, int t, int w)
{
edge[cnt].t = t;
edge[cnt].w = w;
edge[cnt].next = head[f];
head[f] = cnt ++;
}
//spfa
int dis[50005], vis[50005], times[50005];
bool spfa(int root)
{
mem(vis,0);
queue <int> q;
dis[root] = 0;
vis[root] = 1;
q.push(root);
while(!q.empty())
{
int no = q.front();
q.pop();
vis[no] = 0;
for(int i = head[no] ; i != -1; i = edge[i].next)
{
int v = edge[i].t, w = edge[i].w;
if(dis[v] > dis[no] + w)
{
dis[v] = dis[no] + w;
times[v] = times[no] + 1;
if(times[v] == n)
return true;
if(!vis[v])
{
vis[v] = 1;
q.push(v);
}
}
}
}
return false;
}
int ans;
int main(void)
{
#ifdef LOCAL
freopen("data.in", "r", stdin);
freopen("odata.out", "w", stdout);
#endif
mem(head,-1);
cnt = 0;
int w, u, v;
scanf("%d %d %d", &n, &m, &l);
for (int i = 1; i <= m; i++)
{
scanf("%d %d %d", &u, &v, &w);
add(u, v, w);
}
for(int i = 1 ; i <= l ; i ++)
{
scanf("%d %d %d", &u, &v, &w);
add(v, u, -w);
}
for(int i = 2 ; i <= n ; i ++)
add(i,i-1,0);
mem(dis,INF);
for(int i = 1 ; i <= n ; i ++)
{
if(dis[i] == INF)
{
if(spfa(i)) {
cout << "-1" << endl;
return 0;
}
if(i == 1)
{
if(dis[n] == INF)
ans = -2;
else
ans = dis[n];
}
}
}
cout<<ans<<endl;
}
/*
1 2 0
1 3 2
1 4 1
1 5 0
2 3 1
2 4 0
2 5 1
3 4 0
3 5 0
4 5 0
*/
//#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a, b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define DNF 0x7f
#define DBG printf("this is a input\n")
#define fi first
#define se second
#define mk(a, b) make_pair(a,b)
#define p_queue priority_queue
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b) {
return a / gcd(a, b) * b;
}
//前向星
int n, m;
int head[200005], cnt, ohead[200005], ocnt;
struct e{
int t, next;
int w;
}edge[400005],oedge[400005];
void add(int f, int t, int w)
{
edge[cnt].t = t;
edge[cnt].w = w;
edge[cnt].next = head[f];
head[f] = cnt ++;
}
void oadd(int f, int t, int w)
{
oedge[ocnt].t = t;
oedge[ocnt].w = w;
oedge[ocnt].next = ohead[f];
ohead[f] = ocnt ++;
}
//spfa
ll dis[200005], vis[200005], times[200005];
void spfa(int root)
{
mem(vis,0);
queue <int> q;
vis[root] = 1;
dis[root] = 0;
q.push(root);
while(!q.empty())
{
int no = q.front();
q.pop();
vis[no] = 0;
for(int i = ohead[no] ; i != -1; i = oedge[i].next)
{
int v = oedge[i].t, w = oedge[i].w;
if(dis[v] < dis[no] + w)
{
dis[v] = dis[no] + w;
times[v] = times[no] + 1;
if(!vis[v])
{
vis[v] = 1;
q.push(v);
}
}
}
}
}
//tarjan
int ti , tot;
int dfn[200005] , low[200005], st[200005], scc[200005], type = 0;
void tarjan(int u)
{
dfn[u] = low[u] = ++ ti;
st[++ tot] = u;
vis[u] = 1;
for(int i = head[u] ; i != -1 ; i = edge[i].next)
{
if(!dfn[edge[i].t])
{
tarjan(edge[i].t);
low[u] = min(low[u],low[edge[i].t]);
}
else if(vis[edge[i].t])
low[u] = min(low[u],dfn[edge[i].t]);
}
if(low[u] == dfn[u])
{
type ++;
do{
scc[st[tot]] = type;
vis[st[tot]] = 0;
tot --;
}while(u != st[tot+1]);
}
return ;
}
int temp = 0;
map <int,int> ma;
int Size[200005];
void judge()
{
for(int i = 1 ; i <= n ; i ++)
{
for(int j = head[i] ; j != -1 ; j = edge[j].next)
{
int v = edge[j].t , w = edge[j].w;
if(scc[v] == scc[i]) {
ma[scc[v]] += w;
if(ma[scc[v]]) {
temp = 1;
break;
}
}
else
oadd(scc[i],scc[v],w);
}
}
}
ll ans;
int main(void)
{
#ifdef LOCAL
freopen("data.in", "r", stdin);
freopen("odata.out", "w", stdout);
#endif
mem(head,-1);
mem(ohead,-1);
cnt = ocnt = 0;
int u, v, x;
scanf("%d %d", &n, &m);
for (int i = 1; i <= m; i++)
{
scanf("%d %d %d", &x, &u, &v);
if (x == 1)
add(u, v, 0), add(v, u, 0);
else if(x == 2)
add(u,v,1);
else if(x == 3)
add(v,u,0);
else if(x == 4)
add(v,u,1);
else
add(u,v,0);
}
//tarjan找环
for(int i = 1 ; i <= n ; i ++)
if(!dfn[i])
tarjan(i);
//统计环内节点数
for(int i = 1 ; i <= n ; i ++)
Size[scc[i]] ++;
//构图DAG
judge();
//正环无解
if(temp == 1)
{
cout<<"-1"<<endl;
return 0;
}
//统计结果
for(int i = 1 ; i <= type ; i ++)
oadd(0,i,0);
mem(dis,-1);
spfa(0);
for(int i = 0 ; i <= type ; i ++)
ans += dis[i]*Size[i];
cout<<ans+n<<endl;
}
/*
1 2 0
2 1 0
3 2 1
1 4 1
5 4 0
4 5 0
3 5 1
1 2 0
2 1 0
3 2 1
1 4 1
5 4 0
4 5 0
3 5 1
1 5 1
*/
340

被折叠的 条评论
为什么被折叠?



