Solution\mathcal{Solution}Solution
O(N2) 暴力O(N^2) \ 暴力O(N2) 暴力: O(N)O(N)O(N) 枚举 起点, O(N)O(N)O(N) 枚举以该起点为左端点的区间, 计算即可.
对一个区间 [l,r][l, r][l,r], 设 SiS_iSi 表示前缀和,
需要满足以下条件才能对答案贡献 111 :
- Sr−Sl−1r−l+1>=L\frac{S_r-S_{l-1}}{r-l+1}>=Lr−l+1Sr−Sl−1>=L,
- Sr−Sl−1r−l+1<=R\frac{S_r-S_{l-1}}{r-l+1}<=Rr−l+1Sr−Sl−1<=R.
满足上述条件的总数量即为 AnsAnsAns.
满足 Sr−Sl−1r−l+1>=L\frac{S_r-S_{l-1}}{r-l+1}>=Lr−l+1Sr−Sl−1>=L, 的数量为 num1num_1num1,
满足 Sr−Sl−1r−l+1>R\frac{S_r-S_{l-1}}{r-l+1}>Rr−l+1Sr−Sl−1>R (此地不等价于Sr−Sl−1r−l+1>=R+1\frac{S_r-S_{l-1}}{r-l+1}>=R+1r−l+1Sr−Sl−1>=R+1), 数量为 num2num_2num2 .
则 Ans=num1−num2Ans =num_1-num_2Ans=num1−num2 . (相当于一个简单的容斥)
所以只需考虑 num1,num2num_1, num_2num1,num2 如何求即可.
化简 条件1: Sr−Sl−1r−l+1>=L\frac{S_r-S_{l-1}}{r-l+1}>=Lr−l+1Sr−Sl−1>=L
Sr−Sl−1>=L(r−l+1)S_r-S_{l-1}>=L(r-l+1)Sr−Sl−1>=L(r−l+1)
Sr−Sl−1>=Lr−Ll+L .S_r-S_{l-1}>=Lr-Ll+L\ \ \ \ \ \ \ .Sr−Sl−1>=Lr−Ll+L .
将关于 lll , 关于 rrr 的项 分开.
Sr−Lr>=Sl−1−L(l−1)S_r-Lr>=S_{l-1}-L(l-1)Sr−Lr>=Sl−1−L(l−1)
设 Bi=Si−L∗iB_i=S_i-L*iBi=Si−L∗i,
则 num1=(B 的非严格顺序数对数量)num_1 = (B\ 的非严格顺序数对数量)num1=(B 的非严格顺序数对数量).
同理 num2num_2num2 凭此方法求出, 进而 AnsAnsAns 也就可以得到了.
Addition\mathcal{Addition}Addition
当以 LLL 为参数时, 求 {Bi}\{B_i\}{Bi} 数组的 非严格顺序数对 可转换为求 {Bi}\{B_i\}{Bi} 的 严格逆序数对 tmptmptmp, 再使用 总数对数 减去 tmptmptmp.
当以 RRR 为参数时, 求 {Bi}\{B_i\}{Bi} 数组的 严格顺序数对 可转换为求 {−Bi}\{-B_i\}{−Bi} 的 严格逆序数对.
求逆序对时 下标从 0 开始 . 因为下标 l−1∈[0,N−1]l-1∈ [0, N-1]l−1∈[0,N−1],.
进行多次归并排序时一定要清空数组, 因为 B[0]B[0]B[0] 的值会改变.
Code\mathcal{Code}Code
#include<bits/stdc++.h>
#define reg register
typedef long long ll;
const int maxn = 500005;
int read(){
char c;
int s = 0, flag = 1;
while((c=getchar()) && !isdigit(c))
if(c == '-'){ flag = -1, c = getchar(); break ; }
while(isdigit(c)) s = s*10 + c-'0', c = getchar();
return s * flag;
}
int N;
int L;
int R;
int A[maxn];
ll B[maxn];
ll sum[maxn];
int tmp[maxn];
ll mergesort(int l, int r){
if(r <= l) return 0;
int mid = l+r >> 1;
int t1 = l, t2 = mid+1, t3 = l;
ll s = mergesort(l, mid) + mergesort(mid+1, r);
while(t1 <= mid && t2 <= r)
if(B[t2] < B[t1]){
s += mid - t1 + 1;
tmp[t3 ++] = B[t2 ++];
}else tmp[t3 ++] = B[t1 ++];
while(t1 <= mid)tmp[t3 ++] = B[t1 ++];
while(t2 <= r) tmp[t3 ++] = B[t2 ++];
for(reg int i = l; i <= r; i ++) B[i] = tmp[i];
return s;
}
int main(){
freopen("game.in", "r", stdin);
freopen("game.out", "w", stdout);
N = read(); L = read(); R = read();
ll Fen_mu = (1+1ll*N)*N >> 1;
for(reg int i = 1; i <= N; i ++) A[i] = read(), sum[i] = A[i] + sum[i-1];
for(reg int i = 1; i <= N; i ++) B[i] = sum[i] - L*i;
ll num_1 = mergesort(0, N);
for(reg int i = 1; i <= N; i ++) B[i] = R*i - sum[i];
B[0] = 0;
ll num_2 = mergesort(0, N);
ll Ans = (Fen_mu-num_1) - num_2;
if(!Ans) printf("0\n");
else if(Ans == Fen_mu) printf("1\n");
else{
ll gcd = std::__gcd(Ans, Fen_mu);
printf("%lld/%lld\n", Ans/gcd, Fen_mu/gcd);
}
return 0;
}