一、概览
容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 Map 存储着键值对(两个对象)的映射表。
Collection

1. Set
-
TreeSet:基于红黑树实现,支持有序性操作,例如根据一个范围查找元素的操作。但是查找效率不如 HashSet,HashSet 查找的时间复杂度为 O(1),TreeSet 则为 O(logN)。
-
HashSet:基于哈希表实现,支持快速查找,但不支持有序性操作。并且失去了元素的插入顺序信息,也就是说使用 Iterator 遍历 HashSet 得到的结果是不确定的。
-
LinkedHashSet:具有 HashSet 的查找效率,并且内部使用双向链表维护元素的插入顺序。
2. List
-
ArrayList:基于动态数组实现,支持随机访问。
-
Vector:和 ArrayList 类似,但它是线程安全的。
-
LinkedList:基于双向链表实现,只能顺序访问,但是可以快速地在链表中间插入和删除元素。不仅如此,LinkedList 还可以用作栈、队列和双向队列。
3. Queue
-
LinkedList:可以用它来实现双向队列。
-
PriorityQueue:基于堆结构实现,可以用它来实现优先队列。
Map

-
TreeMap:基于红黑树实现。
-
HashMap:基于哈希表实现。
-
HashTable:和 HashMap 类似,但它是线程安全的,这意味着同一时刻多个线程同时写入 HashTable 不会导致数据不一致。它是遗留类,不应该去使用它,而是使用 ConcurrentHashMap 来支持线程安全,ConcurrentHashMap 的效率会更高,因为 ConcurrentHashMap 引入了分段锁。
-
LinkedHashMap:使用双向链表来维护元素的顺序,顺序为插入顺序或者最近最少使用(LRU)顺序。
二、源码分析
ArrayList
特点:查询效率高,增删效率低,线程不安全。
1. 概览
因为 ArrayList 是基于数组实现的,所以支持快速随机访问。RandomAccess 接口标识着该类支持快速随机访问。
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
数组的默认大小为 10
/**
* 默认初始容量大小
*/
private static final int DEFAULT_CAPACITY = 10;

2. 扩容
添加元素时使用 ensureCapacityInternal() 方法来保证容量足够,如果不够时,需要使用 grow() 方法进行扩容,新容量的大小为 oldCapacity + (oldCapacity >> 1),即
oldCapacity+oldCapacity/2。其中 oldCapacity >> 1 需要取整,所以新容量大约是旧容量的 1.5 倍左右。(oldCapacity 为偶数就是 1.5 倍,为奇数就是 1.5 倍-0.5)
扩容操作需要调用 Arrays.copyOf() 把原数组整个复制到新数组中,这个操作代价很高,因此最好在创建 ArrayList 对象时就指定大概的容量大小,减少扩容操作的次数。
测试代码:
final int count = 20 * 100000;
List<Integer> list = new ArrayList<>();
long begin = System.currentTimeMillis();
for(int i = 0; i < count ; i++) {
list.add(i);
}
System.out.println("没有设置ArrayList初始容量: " + (System.currentTimeMillis() - begin) + " ms");
list = new ArrayList<>(count);
begin = System.currentTimeMillis();
for(int i = 0; i < count ; i++) {
list.add(i);
}
System.out.println("设置了ArrayList初始容量: " + (System.currentTimeMillis() - begin) + " ms");
执行结果:
没有设置ArrayList初始容量: 89 ms
设置了ArrayList初始容量: 18 ms
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}

3. 删除元素
需要调用 System.arraycopy() 将 index+1 后面的元素都复制到 index 位置上,该操作的时间复杂度为 O(N),可以看到 ArrayList 删除元素的代价是非常高的。
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
删除其实跟新增是一样的,不过叫是叫删除,但是在代码里面我们发现,他还是在copy一个数组。

Vector
1. 同步
它的实现与 ArrayList 类似,但是使用了 synchronized 进行同步。
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
return elementData(index);
}
2. 扩容
Vector 的构造函数可以传入 capacityIncrement 参数,它的作用是在扩容时使容量 capacity 增长 capacityIncrement。
如果这个参数的值小于等于 0,扩容时每次都令 capacity 为原来的两倍。
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
调用没有 capacityIncrement 的构造函数时,capacityIncrement 值被设置为 0,也就是说默认情况下 Vector 每次扩容时容量都会翻倍。
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
public Vector() {
this(10);
}
3. 与 ArrayList 的比较
- Vector 是同步的,因此开销就比 ArrayList 要大,访问速度更慢。最好使用 ArrayList 而不是 Vector,因为同步操作完全可以由程序员自己来控制;
- Vector 每次扩容请求其大小的 2 倍(也可以通过构造函数设置增长的容量),而 ArrayList 是 1.5 倍。
4. 替代方案
可以使用 Collections.synchronizedList(); 得到一个线程安全的 ArrayList。
List<String> list = new ArrayList<>();
List<String> synList = Collections.synchronizedList(list);
也可以使用 concurrent 并发包下的 CopyOnWriteArrayList 类。
List<String> list = new CopyOnWriteArrayList<>();
LinkedList
1. 概览
基于双向链表实现,使用 Node 存储链表节点信息。
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
}
每个链表存储了 first 和 last 指针:
transient Node<E> first;
transient Node<E> last;

2. 与 ArrayList 的比较
ArrayList 基于动态数组实现,LinkedList 基于双向链表实现。ArrayList 和 LinkedList 的区别可以归结为数组和链表的区别:
- 数组支持随机访问,但插入删除的代价很高,需要移动大量元素;
- 链表不支持随机访问,但插入删除只需要改变指针。
LinkedList补充:
LinkedList是一个实现了List接口和Deque接口的双端链表。 LinkedList底层的链表结构使它支持高效的插入和删除操作,
另外它实现了Deque接口,使得LinkedList类也具有队列的特性; LinkedList不是线程安全的,
如果想使LinkedList变成线程安全的,可以调用静态类Collections类中的synchronizedList方法:
List list=Collections.synchronizedList(new LinkedList(...));
廖雪峰官方网站讲解Deque的使用:
我们知道,Queue是队列,只能一头进,另一头出。
如果把条件放松一下,允许两头都进,两头都出,这种队列叫双端队列(Double Ended Queue),学名Deque。
Java集合提供了接口Deque来实现一个双端队列,它的功能是:
- 既可以添加到队尾,也可以添加到队首;
- 既可以从队首获取,又可以从队尾获取。
廖雪峰官方网站:https://www.liaoxuefeng.com/wiki/1252599548343744/1265122668445536
CopyOnWriteArrayList
1. 读写分离
写操作在一个复制的数组上进行,读操作还是在原始数组中进行,读写分离,互不影响。
写操作需要加锁,防止并发写入时导致写入数据丢失。
写操作结束之后需要把原始数组指向新的复制数组。
public boolean add(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1);
newElements[len] = e;
setArray(newElements);
return true;
} finally {
lock.unlock();
}
}
final void setArray(Object[] a) {
array = a;
}
@SuppressWarnings("unchecked")
private E get(Object[] a, int index) {
return (E) a[index];
}
2. 适用场景
CopyOnWriteArrayList 在写操作的同时允许读操作,大大提高了读操作的性能,因此很适合读多写少的应用场景。
但是 CopyOnWriteArrayList 有其缺陷:
- 内存占用:在写操作时需要复制一个新的数组,使得内存占用为原来的两倍左右;
- 数据不一致:读操作不能读取实时性的数据,因为部分写操作的数据还未同步到读数组中。
所以 CopyOnWriteArrayList 不适合内存敏感以及对实时性要求很高的场景。
-------------------------------------------------------------------------------------------------------------------------------------------
参考:
https://github.com/CyC2018/CS-Notes/blob/master/notes/Java%20%E5%AE%B9%E5%99%A8.md
敖丙:
https://github.com/AobingJava/JavaFamily
本文介绍了Java容器,主要包括Collection和Map两种。Collection下有Set、List、Queue等,Map有TreeMap、HashMap等。还对ArrayList、Vector、LinkedList、CopyOnWriteArrayList等进行了源码分析,对比了它们的特点、扩容机制、线程安全性等,指出了各自的适用场景。
560

被折叠的 条评论
为什么被折叠?



