Linear regression with one variable

本文介绍了一种使用线性回归预测食品车利润的方法。通过给定的城市人口数据和对应的食品车利润数据,利用Matlab实现计算成本函数J(θ)及梯度下降算法,帮助连锁餐厅的CEO决定下一个开设分店的城市。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Promble:

       In this part of this exercise, you will implement linear regression with one variable to predict profits for a food truck. Suppose you are the CEO of a restaurant franchise and are considering different cities for opening a new outlet. The chain already has trucks in various cities and you have data for profits and populations from the cities.
       You would like to use this data to help you select which city to expand to next.

       The file ex1data1.txt contains the dataset for our linear regression problem. The first column is the population of a city and the second column is the profit of a food truck in that city. A negative value for profit indicates a loss.


2.Computing the cost J(θ):


此部分matlab代码如下:

<span style="font-size:14px;">function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y
 
% Initialize some useful values
m = length(y); % number of training examples
 
% You need to return the following variables correctly 
J = 0;
 
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.
J = sum((X * theta - y).^2) / (2*m);     % X(79,2)  theta(2,1)</span>
 
end




3.Gradient Descent&Update Equations



此部分matlab代码如下:

<span style="font-size:14px;">function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
%   theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by 
%   taking num_iters gradient steps with learning rate alpha
 
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
theta_s=theta;
 
for iter = 1:num_iters
 
    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCost) and gradient here.
    %
    theta(1) = theta(1) - alpha / m * sum(X * theta_s - y);       
    theta(2) = theta(2) - alpha / m * sum((X * theta_s - y) .* X(:,2));   
    theta_s=theta; 
    
 
    % ============================================================
 
    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);
 
end
J_history
end</span>


最终程序运行结果如下:








整个程序的代码见:http://download.youkuaiyun.com/detail/zhe123zhe123zhe123/9535946



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值