标题:四方定理
数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示。
我们可以通过计算机验证其在有限范围的正确性。
数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示。
我们可以通过计算机验证其在有限范围的正确性。
对于大数,简单的循环嵌套是不适宜的。下面的代码给出了一种分解方案。
int f(int n, int a[], int idx)
{
if(n==0) return 1;
if(idx==4) return 0;
for(int i=(int)sqrt(n); i>=1; i--)
{
a[idx] = i;
if(_______________________) return 1; // 填空
}
return 0;
}
int main(int argc, char* argv[])
{
for(;;)
{
int number;
printf("输入整数(1~10亿):");
scanf("%d",&number);
int a[] = {0,0,0,0};
int r = f(number, a, 0);
printf("%d: %d %d %d %d\n", r, a[0], a[1], a[2], a[3]);
}
return 0;
}
请分析代码逻辑,并推测划线处的代码。
仅把缺少的代码作为答案,通过网页提交。
千万不要填写多余的代码、符号或说明文字!
答案:i*i==n||f(n-i*i,a,idx+1)