目录
动态字符串(SDS)
Redis构建了一种新的字符串结构,称为简单动态字符串(Simple Dynamic String),简称SDS。 例如,我们执行命令:
那么Redis将在底层创建两个SDS,其中一个是包含“name”的SDS,另一个是包含“虎哥”的SDS。
Redis是C语言实现的,其中SDS是一个结构体,源码如下:
例如,一个包含字符串“name”的sds结构如下:
SDS之所以叫做动态字符串,是因为它具备动态扩容的能力,例如一个内容为“hi”的SDS:
假如我们要给SDS追加一段字符串“,Amy”,这里首先会申请新内存空间:
如果新字符串小于1M,则新空间为扩展后字符串长度的两倍+1;
如果新字符串大于1M,则新空间为扩展后字符串长度+1M+1。称为内存预分配。
Dict
我们知道Redis是一个键值型(Key-Value Pair)的数据库,我们可以根据键实现快速的增删改查。而键与值的映射关系正是通过Dict来实现的。 Dict由三部分组成,分别是:哈希表(DictHashTable)、哈希节点(DictEntry)、字典(Dict)
当我们向Dict添加键值对时,Redis首先根据key计算出hash值(h),然后利用 h & sizemask来计算元素应该存储到数组中的哪个索引位置。我们存储k1=v1,假设k1的哈希值h =1,则1&3 =1,因此k1=v1要存储到数组角标1位置。
Dict由三部分组成,分别是:哈希表(DictHashTable)、哈希节点(DictEntry)、字典(Dict)
Dict的扩容
Dict中的HashTable就是数组结合单向链表的实现,当集合中元素较多时,必然导致哈希冲突增多,链表过长,则查询效率会大大降低。 Dict在每次新增键值对时都会检查负载因子(LoadFactor = used/size) ,满足以下两种情况时会触发哈希表扩容: 哈希表的 LoadFactor >= 1,并且服务器没有执行 BGSAVE 或者 BGREWRITEAOF 等后台进程; 哈希表的 LoadFactor > 5 ;
Dict的rehash
不管是扩容还是收缩,必定会创建新的哈希表,导致哈希表的size和sizemask变化,而key的查询与sizemask有关。因此必须对哈希表中的每一个key重新计算索引,插入新的哈希表,这个过程称为rehash。过程是这样的:
-
计算新hash表的realeSize,值取决于当前要做的是扩容还是收缩:
-
如果是扩容,则新size为第一个大于等于dict.ht[0].used + 1的2^n
-
如果是收缩,则新size为第一个大于等于dict.ht[0].used的2^n (不得小于4)
-
-
按照新的realeSize申请内存空间,创建dictht,并赋值给dict.ht[1]
-
设置dict.rehashidx = 0,标示开始rehash
-
将dict.ht[0]中的每一个dictEntry都rehash到dict.ht[1]
-
将dict.ht[1]赋值给dict.ht[0],给dict.ht[1]初始化为空哈希表,释放原来的dict.ht[0]的内存
-
将rehashidx赋值为-1,代表rehash结束
-
在rehash过程中,新增操作,则直接写入ht[1],查询、修改和删除则会在dict.ht[0]和dict.ht[1]依次查找并执行。这样可以确保ht[0]的数据只减不增,随着rehash最终为空
整个过程可以描述成:
小总结:
Dict的结构:
-
类似java的HashTable,底层是数组加链表来解决哈希冲突
-
Dict包含两个哈希表,ht[0]平常用,ht[1]用来rehash
Dict的伸缩:
-
当LoadFactor大于5或者LoadFactor大于1并且没有子进程任务时,Dict扩容
-
当LoadFactor小于0.1时,Dict收缩
-
扩容大小为第一个大于等于used + 1的2^n
-
收缩大小为第一个大于等于used 的2^n
-
Dict采用渐进式rehash,每次访问Dict时执行一次rehash
-
rehash时ht[0]只减不增,新增操作只在ht[1]执行,其它操作在两个哈希表
ZipList
ZipList 是一种特殊的“双端链表” ,由一系列特殊编码的连续内存块组成。可以在任意一端进行压入/弹出操作, 并且该操作的时间复杂度为 O(1)。
属性 | 类型 | 长度 | 用途 |
---|---|---|---|
zlbytes | uint32_t | 4 字节 | 记录整个压缩列表占用的内存字节数 |
zltail | uint32_t | 4 字节 | 记录压缩列表表尾节点距离压缩列表的起始地址有多少字节,通过这个偏移量,可以确定表尾节点的地址。 |
zllen | uint16_t | 2 字节 | 记录了压缩列表包含的节点数量。 最大值为UINT16_MAX (65534),如果超过这个值,此处会记录为65535,但节点的真实数量需要遍历整个压缩列表才能计算得出。 |
entry | 列表节点 | 不定 | 压缩列表包含的各个节点,节点的长度由节点保存的内容决定。 |
zlend | uint8_t | 1 字节 | 特殊值 0xFF (十进制 255 ),用于标记压缩列表的末端。 |
ZipListEntry
ZipList 中的Entry并不像普通链表那样记录前后节点的指针,因为记录两个指针要占用16个字节,浪费内存。而是采用了下面的结构:
-
previous_entry_length:前一节点的长度,占1个或5个字节。
-
如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值
-
如果前一节点的长度大于254字节,则采用5个字节来保存这个长度值,第一个字节为0xfe,后四个字节才是真实长度数据
-
-
encoding:编码属性,记录content的数据类型(字符串还是整数)以及长度,占用1个、2个或5个字节
-
contents:负责保存节点的数据,可以是字符串或整数
ZipList中所有存储长度的数值均采用小端字节序,即低位字节在前,高位字节在后。例如:数值0x1234,采用小端字节序后实际存储值为:0x3412
Encoding编码
ZipListEntry中的encoding编码分为字符串和整数两种: 字符串:如果encoding是以“00”、“01”或者“10”开头,则证明content是字符串
编码 | 编码长度 | 字符串大小 |
---|---|---|
|00pppppp| | 1 bytes | <= 63 bytes |
|01pppppp|qqqqqqqq| | 2 bytes | <= 16383 bytes |
|10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| | 5 bytes | <= 4294967295 bytes |
例如,我们要保存字符串:“ab”和 “bc”
ZipListEntry中的encoding编码分为字符串和整数两种:
-
整数:如果encoding是以“11”开始,则证明content是整数,且encoding固定只占用1个字节
编码 | 编码长度 | 整数类型 |
---|---|---|
11000000 | 1 | int16_t(2 bytes) |
11010000 | 1 | int32_t(4 bytes) |
11100000 | 1 | int64_t(8 bytes) |
11110000 | 1 | 24位有符整数(3 bytes) |
11111110 | 1 | 8位有符整数(1 bytes) |
1111xxxx | 1 | 直接在xxxx位置保存数值,范围从0001~1101,减1后结果为实际值 |
Redis五种基本数据结构
redis存储的是:key,value格式的数据,其中key都是字符串,value有5种不同的数据结构
其中value的五种基本数据结构:
字符串类型 string
哈希类型 hash : map格式
列表类型 list : linkedlist格式。支持重复元素
集合类型 set : 不允许重复元素
有序集合类型 sortedset:不允许重复元素,且元素有顺序
字符串类型 string
String是Redis中最常见的数据存储类型:
其基本编码方式是RAW,基于简单动态字符串(SDS)实现,存储上限为512mb。
如果存储的SDS长度小于44字节,则会采用EMBSTR编码,此时object head与SDS是一段连续空间。申请内存时
只需要调用一次内存分配函数,效率更高。
(1)底层实现⽅式:动态字符串sds 或者 long
String的内部存储结构⼀般是sds(Simple Dynamic String,可以动态扩展内存),但是如果⼀个String类型的value的值是数字,那么Redis内部会把它转成long类型来存储,从⽽减少内存的使用。
如果存储的字符串是整数值,并且大小在LONG_MAX范围内,则会采用INT编码:直接将数据保存在RedisObject的ptr指针位置(刚好8字节),不再需要SDS了。
常用指令:
命令 | 介绍 |
---|---|
SET key value | 设置指定 key 的值 |
SETNX key value | 只有在 key 不存在时设置 key 的值 |
GET key | 获取指定 key 的值 |
MSET key1 value1 key2 value2 … | 设置一个或多个指定 key 的值 |
MGET key1 key2 ... | 获取一个或多个指定 key 的值 |
STRLEN key | 返回 key 所储存的字符串值的长度 |
INCR key | 将 key 中储存的数字值增一 |
DECR key | 将 key 中储存的数字值减一 |
EXISTS key | 判断指定 key 是否存在 |
DEL key(通用) | 删除指定的 key |
EXPIRE key seconds(通用) | 给指定 key 设置过期时间 |
哈希类型 hash
Redis 中的 Hash 是一个 String 类型的 field-value(键值对) 的映射表,特别适合用于存储对象,后续操作的时候,可以直接修改这个对象中的某些字段的值。
Hash 类似于 JDK1.8 前的 HashMap
,内部实现也差不多(数组 + 链表)。不过,Redis 的 Hash 做了更多优化。
Hash 类型的底层数据结构是由压缩列表或哈希表实现的:
- 如果哈希类型元素个数小于 512 个(默认值,可由 hash-max-ziplist-entries 配置),所有值小于 64 字节(默认值,可由 hash-max-ziplist-value 配置)的话,Redis 会使用压缩列表作为 Hash 类型的底层数据结构;
- 如果哈希类型元素不满足上面条件,Redis 会使用哈希表作为 Hash 类型的 底层数据结构。
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
常用命令
命令 | 介绍 |
---|---|
HSET key field value | 设置指定哈希表中指定字段的值 |
HSETNX key field value | 只有指定字段不存在时设置指定字段的值 |
HMSET key field1 value1 field2 value2 ... | 同时将一个或多个 field-value (域-值)对设置到指定哈希表中 |
HGET key field | 获取指定哈希表中指定字段的值 |
HMGET key field1 field2 ... | 获取指定哈希表中一个或者多个指定字段的值 |
HGETALL key | 获取指定哈希表中所有的键值对 |
HEXISTS key field | 查看指定哈希表中指定的字段是否存在 |
HDEL key field1 field2 ... | 删除一个或多个哈希表字段 |
HLEN key | 获取指定哈希表中字段的数量 |
(1)底层实现方式:压缩列表ziplist 或者 字典dict 当Hash中数据项比较少的情况下,Hash底层才⽤压缩列表ziplist进⾏存储数据,随着数据的增加,底层的ziplist就可能会转成dict,具体配置如下:
hash-max-ziplist-entries 512
hash-max-ziplist-value 64
当满足上面两个条件其中之⼀的时候,Redis就使⽤dict字典来实现hash。 Redis的hash之所以这样设计,是因为当ziplist变得很⼤的时候,它有如下几个缺点:
-
每次插⼊或修改引发的realloc操作会有更⼤的概率造成内存拷贝,从而降低性能。
-
⼀旦发生内存拷贝,内存拷贝的成本也相应增加,因为要拷贝更⼤的⼀块数据。
-
当ziplist数据项过多的时候,在它上⾯查找指定的数据项就会性能变得很低,因为ziplist上的查找需要进行遍历。
总之,ziplist本来就设计为各个数据项挨在⼀起组成连续的内存空间,这种结构并不擅长做修改操作。⼀旦数据发⽣改动,就会引发内存realloc,可能导致内存拷贝。
hash结构如下:
列表类型 list
List 列表是简单的字符串列表,按照插入顺序排序,可以从头部或尾部向 List 列表添加元素。
列表的最大长度为 2^32 - 1,也即每个列表支持超过 40 亿个元素。
List 类型的底层数据结构是由双向链表或压缩列表实现的:
- 如果列表的元素个数小于 512 个(默认值,可由 list-max-ziplist-entries 配置),列表每个元素的值都小于 64 字节(默认值,可由 list-max-ziplist-value 配置),Redis 会使用压缩列表作为 List 类型的底层数据结构;
- 如果列表的元素不满足上面的条件,Redis 会使用双向链表作为 List 类型的底层数据结构;
但是在 Redis 3.2 版本之后,List 数据类型底层数据结构就只由 quicklist 实现了,替代了双向链表和压缩列表。
常用命令
命令 | 介绍 |
---|---|
RPUSH key value1 value2 ... | 在指定列表的尾部(右边)添加一个或多个元素 |
LPUSH key value1 value2 ... | 在指定列表的头部(左边)添加一个或多个元素 |
LSET key index value | 将指定列表索引 index 位置的值设置为 value |
LPOP key | 移除并获取指定列表的第一个元素(最左边) |
RPOP key | 移除并获取指定列表的最后一个元素(最右边) |
LLEN key | 获取列表元素数量 |
LRANGE key start end | 获取列表 start 和 end 之间 的元素 |
集合类型 set
Set是Redis中的单列集合,满足下列特点:
* 不保证有序性
* 保证元素唯一
* 求交集、并集、差集
Set 类型和 List 类型的区别如下:
- List 可以存储重复元素,Set 只能存储非重复元素;
- List 是按照元素的先后顺序存储元素的,而 Set 则是无序方式存储元素的。
Set 类型的底层数据结构是由哈希表或整数集合实现的:
- 如果集合中的元素都是整数且元素个数小于 512 (默认值,set-maxintset-entries配置)个,Redis 会使用整数集合作为 Set 类型的底层数据结构;
- 如果集合中的元素不满足上面条件,则 Redis 使用哈希表作为 Set 类型的底层数据结构。
常用命令
命令 | 介绍 |
---|---|
SADD key member1 member2 ... | 向指定集合添加一个或多个元素 |
SMEMBERS key | 获取指定集合中的所有元素 |
SCARD key | 获取指定集合的元素数量 |
SISMEMBER key member | 判断指定元素是否在指定集合中 |
SINTER key1 key2 ... | 获取给定所有集合的交集 |
SINTERSTORE destination key1 key2 ... | 将给定所有集合的交集存储在 destination 中 |
SUNION key1 key2 ... | 获取给定所有集合的并集 |
SUNIONSTORE destination key1 key2 ... | 将给定所有集合的并集存储在 destination 中 |
SDIFF key1 key2 ... | 获取给定所有集合的差集 |
SDIFFSTORE destination key1 key2 ... | 将给定所有集合的差集存储在 destination 中 |
SPOP key count | 随机移除并获取指定集合中一个或多个元素 |
SRANDMEMBER key count | 随机获取指定集合中指定数量的元素 |
有序集合类型 sortedset
ZSet也就是SortedSet,其中每一个元素都需要指定一个score值和member值:
* 可以根据score值排序后
* member必须唯一
* 可以根据member查询分数
Zset 类型(有序集合类型)相比于 Set 类型多了一个排序属性 score(分值),对于有序集合 ZSet 来说,每个存储元素相当于有两个值组成的,一个是有序结合的元素值,一个是排序值。
有序集合保留了集合不能有重复成员的特性(分值可以重复),但不同的是,有序集合中的元素可以排序。
Zset 类型的底层数据结构是由压缩列表或跳表实现的:
- 如果有序集合的元素个数小于 128 个,并且每个元素的值小于 64 字节时,Redis 会使用压缩列表作为 Zset 类型的底层数据结构;
- 如果有序集合的元素不满足上面的条件,Redis 会使用跳表作为 Zset 类型的底层数据结构;
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
常用命令
命令 | 介绍 |
---|---|
ZADD key score1 member1 score2 member2 ... | 向指定有序集合添加一个或多个元素 |
ZCARD KEY | 获取指定有序集合的元素数量 |
ZSCORE key member | 获取指定有序集合中指定元素的 score 值 |
ZINTERSTORE destination numkeys key1 key2 ... | 将给定所有有序集合的交集存储在 destination 中,对相同元素对应的 score 值进行 SUM 聚合操作,numkeys 为集合数量 |
ZUNIONSTORE destination numkeys key1 key2 ... | 求并集,其它和 ZINTERSTORE 类似 |
ZDIFF destination numkeys key1 key2 ... | 求差集,其它和 ZINTERSTORE 类似 |
ZRANGE key start end | 获取指定有序集合 start 和 end 之间的元素(score 从低到高) |
ZREVRANGE key start end | 获取指定有序集合 start 和 end 之间的元素(score 从高到底) |
ZREVRANK key member | 获取指定有序集合中指定元素的排名(score 从大到小排序) |
经典面试题-redis缓存穿透、缓存击穿、缓存雪崩
缓存穿透
描述:
缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求。由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。
在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。
如发起为id为“-1”的数据或id为特别大不存在的数据。这时的用户很可能是攻击者,攻击会导致数据库压力过大。
解决方案:
接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截; |
从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击 |
缓存击穿
描述:
缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。
解决方案:
1、设置热点数据永远不过期。
2、接口限流与熔断,降级。重要的接口一定要做好限流策略,防止用户恶意刷接口,同时要降级准备,当接口中的某些 服务 不可用时候,进行熔断,失败快速返回机制。
3、布隆过滤器。bloomfilter就类似于一个hash set,用于快速判某个元素是否存在于集合中,其典型的应用场景就是快速判断一个key是否存在于某容器,不存在就直接返回。布隆过滤器的关键就在于hash算法和容器大小,
4、加互斥锁
缓存雪崩
描述:
缓存雪崩是指缓存中数据大批量到过期时间,而查询数据量巨大,引起数据库压力过大甚至down机。和缓存击穿不同的是, 缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。
解决方案:
- 缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
- 如果缓存数据库是分布式部署,将热点数据均匀分布在不同搞得缓存数据库中。
- 设置热点数据永远不过期。