Description
Yash has recently learnt about the Fibonacci sequence and is very excited about it. He calls a sequence Fibonacci-ish if
- the sequence consists of at least two elements
- f0 and f1 are arbitrary
- fn+2=fn+1+fn for all n≥0.
You are given some sequence of integers a1,a2,...,an. Your task is rearrange elements of this sequence in such a way that its longest possible prefix is Fibonacci-ish sequence.
Input
The first line of the input contains a single integer n (2≤n≤1000)− the length of the sequence ai.
The second line contains n integers a1,a2,...,an (|ai|≤109).
Output
Print the length of the longest possible Fibonacci-ish prefix of the given sequence after rearrangement.
Sample Input
3
1 2 -1
Sample Output
3
HINT
In the first sample, if we rearrange elements of the sequence as -1, 2, 1, the whole sequence ai would be Fibonacci-ish.
思路
斐波那契数列的第一项、第二项影响整个数列,如何选择第一二两项决定数列的长度。
斐波那契数列是一个非递减数列,不妨现将所给的n个数排序。然后从中选择两个数作为第一、二项,然后根据其特性用二分在原序列中查找F(n)(F(n)=F(n-1)+F(n-2))...F(n+1)...F(n+2)...
注意,已选择过的数不能再次选择
代码
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
typedef long long LL;
#define MAX 1005
LL Array[MAX],Mark[MAX],x,y,n;
int Binary_search(int v,int l,int r)
{
int left=l,right=r,mid,temp;
while(left<=right)
{
mid=(left+right)/2;
if(Array[mid]==v)
{
if(Mark[mid]==1)//若Array[mid]已被选择,则尝试在剩余的数中找与它大小相同的数
{
temp=Binary_search(v,left,mid-1);
if(temp!=-1) return temp;
temp=Binary_search(v,mid+1,right);
if(temp!=-1) return temp;
return -1;
}
else
return mid;
}
else if(v>Array[mid])
left=mid+1;
else if(v<Array[mid])
right=mid-1;
}
return -1;
}
int solve()
{
int re=2,flag=1;
while(flag)
{
int pos=Binary_search(x+y,0,n-1);
if(pos!=-1&&Array[pos]==x+y)
{
x=y;
y=Array[pos];
Mark[pos]=1;
re+=1;
}
else
flag=0;
}
return re;
}
int main()
{
int i,j;
while(~scanf("%d",&n))
{
for(i=0;i<n;i++)
scanf("%lld",&Array[i]);
sort(Array,Array+n);
int ans=2;
memset(Mark,0,sizeof(Mark));
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
if(i!=j)
{
x=Array[i]; y=Array[j];
Mark[i]=Mark[j]=1;
int Return=solve();
memset(Mark,0,sizeof(Mark));
if(Return>ans) ans=Return;
}
if(ans==n) break;
}
if(ans==n) break;
}
printf("%d\n",ans);
}
return 0;
}
本文介绍了一种算法,旨在通过重新排列给定整数序列,使其具有尽可能长的斐波那契前缀。首先对序列进行排序,然后选择两个数作为斐波那契序列的起始值,使用二分查找在原序列中寻找后续的斐波那契数,确保已选数不再重复使用。此方法能找出最长的斐波那契似序列。
795

被折叠的 条评论
为什么被折叠?



