-
redis本身可以做缓存,为什么不直接返回数据呢?
-
如果数据量比较大,单个set,会有性能问题?
-
业务不重要,将全量数据放在redis中,占用服务器大量内存。投入产出不成比例?
问题1
需要区分业务场景,结果数据少,我们是可以直接使用redis作为缓存,直接返回数据。结果比较大就不太适合用redis存放了。比如ugc内容,一个评论里面可能存在上万字,业务字段多。
redis使用有很多技巧。bigkey 危害比较大,无论是扩容或缩容带来的内存申请释放, 还是查询命令使用不当导致大量数据返回,都会影响redis的稳定。这里就不细谈原因及危害了。
解决bigkey 方法很简单。我们可以使用hash函数来分桶,将数据分散到多个key中。减少单个key的大小,同时不影响查询效率。
问题3
是redis存储占用内存太大。因此我们需要减少内存使用。重新思考一下引入redis的目的。redis像一个集合,整个业务就是验证请求的参数是否在集合中。
这个结构就像洗澡的时候用的双向阀门:左边热水,右边冷水。
大部分的编程语言都内置了filter。拿python举例,filter函数用于过滤序列, 过滤掉不符合条件的元素,返回由符合条件元素组成的列表。
我们看个例子:
$ python2
Python 2.7.10 (default, Oct 6 2017, 22:29:07)
[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.31)] on darwin
Type “help”, “copyright”, “credits” or “license” for more information.
s = {2, 4}
filter(lambda x:x in s, [0, 1, 2])
[2]
集合s中存在 2,4两个数字,我们需要查询 0,1,2 那些在集合s中。 lambda x:x in s构造一个匿名函数,判断入参x是否在集合s中。过滤器filter依次对列表中的数字执行匿名函数。最终返回列表[2]。
redis中实现set用了两种结构:intset和hash table。非数字或者大量数字时都会退化成hash table。那么是否好的算法可以节省hash table的大小呢?
其实早在1970年由Burton Howard Bloom提出的布隆过滤器(英语:Bloom Filter)。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。
它的优点是空间效率和查询时间都远远超过一般的算法, 缺点是有一定的误识别率和删除困难。
BloomFilter原理
我们常见的将业务字段拼接之后md5,放在一个集合中。md5生成一个固定长度的128bit的串。如果我们用bitmap来表示,则需要
2**128 = 340282366920938463463374607431768211456 bit
判断一个值在不在,就变成在这个bitmap中判断所在位是否为1。但是我们全世界的机器存储空间也无法存储下载。因此我们只能分配有限的空间来存储。
当只有一个hash函数时:很容易发生冲突。
可以看到上面1和2的hash结果都是7,发生冲突。如果增加hash函数,会发生什么情况?
我们使用更多的hash函数和更大的数据集合来测试。得到下面这张表
由此可以看到当增加hash方法能够有效的降低碰撞机率。比较好的数据如下:
但是增加了hash方法之后,会降低空间的使用效率。当集合占用总体空间达到25%的时候, 增加hash 的效果已经不明显
上面的使用多个hash方法来降低碰撞就是BloomFilter的核心思想。
算法优点:
- 数据空间小,不用存储数据本身。
算法本身缺点:
-
元素可以添加到集合中,但不能被删除。
-
匹配结果只能是“绝对不在集合中”,并不能保证匹配成功的值已经在集合中。
-
当集合快满时,即接近预估最大容量时,误报的概率会变大。
-
数据占用空间放大。一般来说,对于1%的误报概率,每个元素少于10比特,与集合中的元素的大小或数量无关。查询过程变慢,hash函数增多,导致每次匹配过程,需要查找多个位(hash个数)来确认是否存在。
对于BloomFilter的优点来说,缺点都可以忽略。毕竟只需要kN的存储空间就能存储N个元素。空间效率十分优秀。
如何使用BloomFilter
BloomFilter 需要一个大的bitmap来存储。鉴于目前公司现状,最好的存储容器是redis。从github topics: bloom-filter中经过简单的调研。
redis集成BloomFilter方案:
-
原生python 调用setbit 构造 BloomFilter
-
lua脚本
-
Rebloom - Bloom Filter Module for Redis (注:redis Module在redis4.0引入)
-
使用hiredis 调用redis pyreBloom
原生python 方法太慢,lua脚本和module 部署比较麻烦。于是我们推荐使用pyreBloom,底层使用。
pyreBloom:master λ ls
Makefile bloom.h bloom.pxd murmur.c pyreBloom.pyx
bloom.c bloom.o main.c pyreBloom.c
从文件命名上可以看到bloom 使用c编写。pyreBloom 使用cython编写。
bloom.h 里面实现BloomFilter的核心逻辑,完成与redis server的交互;hash函数;添加,检查和删除方法的实现。
进阶:计数过滤器(Counting Filter)
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

读者福利
分享一份自己整理好的Java面试手册,还有一些面试题pdf
不要停下自己学习的脚步
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
自己整理好的Java面试手册,还有一些面试题pdf
不要停下自己学习的脚步
[外链图片转存中…(img-DTJcvBpm-1713629154773)]
[外链图片转存中…(img-vCPuXwrZ-1713629154773)]
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!