20180711 F-Divisions

本文介绍了一种利用Miller-Rabin算法进行快速素数测试的方法,并采用Pollard's rho算法实现大整数的质因数分解。通过具体代码示例展示了如何找到一个数的所有质因数及其指数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大质数的分解

用到了网上的模板

如:12=2^2*3^1

则答案为(2+1)×(1+1)=6

注意:质数为2,1为1

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std;




//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=20;//随机算法判定次数,S越大,判错概率越小




//计算 (a*b)%c.   a,b都是long long的数,直接相乘可能溢出的
//  a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
    a%=c;
    b%=c;
    long long ret=0;
    while(b)
    {
        if(b&1)
        {
            ret+=a;
            ret%=c;
        }
        a<<=1;
        if(a>=c)a%=c;
        b>>=1;
    }
    return ret;
}






//计算  x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
    if(n==1)return x%mod;
    x%=mod;
    long long tmp=x;
    long long ret=1;
    while(n)
    {
        if(n&1) ret=mult_mod(ret,tmp,mod);
        tmp=mult_mod(tmp,tmp,mod);
        n>>=1;
    }
    return ret;
}










//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
    long long ret=pow_mod(a,x,n);
    long long last=ret;
    for(int i=1; i<=t; i++)
    {
        ret=mult_mod(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true;//合数
        last=ret;
    }
    if(ret!=1) return true;
    return false;
}


// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;


bool Miller_Rabin(long long n)
{
    if(n<2)return false;
    if(n==2)return true;
    if((n&1)==0) return false;//偶数
    long long x=n-1;
    long long t=0;
    while((x&1)==0)
    {
        x>>=1;
        t++;
    }
    for(int i=0; i<S; i++)
    {
        long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
        if(check(a,n,x,t))
            return false;//合数
    }
    return true;
}




//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始


long long gcd(long long a,long long b)
{
    if(a==0)return 1;//???????
    if(a<0) return gcd(-a,b);
    while(b)
    {
        long long t=a%b;
        a=b;
        b=t;
    }
    return a;
}


long long Pollard_rho(long long x,long long c)
{
    long long i=1,k=2;
    long long x0=rand()%x;
    long long y=x0;
    while(1)
    {
        i++;
        x0=(mult_mod(x0,x0,x)+c)%x;
        long long d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(i==k)
        {
            y=x0;
            k+=k;
        }
    }
}
//对n进行素因子分解
void findfac(long long n)
{
    if(Miller_Rabin(n))//素数
    {
        factor[tol++]=n;
        return;
    }
    long long p=n;
    while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
    findfac(n/p);
}
int main()
{
    long long n;
    int t;
    int cont=0;
    int cs[100]= {0};
    int sum=1;
    cin>>n;
    tol=0;
    //1要单独判断,输出1,否则会错


    if(n==1)
    {
        printf("1\n");
        return 0;
    }


    findfac(n);
    if(tol==1)
    {
        printf("2\n");
        return 0;
    }
    sort(factor,factor+tol);
    for(int i=0; i<tol; i++)
        if(factor[i]==factor[i+1])
        {
            cs[cont]++;
        }
        else
        {
            cs[cont]++;
            cont++;
        }
    //统计每个质因数的次数
    /*
     for(int i=0;i<cont;i++)
     printf("%d ",cs[i]);
     */


    for(int i=0; i<cont; i++)
        sum=sum*(cs[i]+1);
    cout<<sum<<endl;
    return 0;


}

GridLevel lvl; if(0 == level){ lvl.size = m_baseSize; lvl.divisions = m_baseSize; } else { // lvl.size = m_baseSize * pow(2, level); // lvl.divisions = 10 * pow(2, level); lvl.size = pow(2, m_baseSize); lvl.divisions = pow(2, m_baseSize); } qDebug() << __FUNCTION__ << lvl.size << lvl.divisions; // 创建单位网格线(将被实例化) std::vector<QVector2D> lines; lines.emplace_back(0.0f, 0.0f); lines.emplace_back(1.0f, 0.0f); lines.emplace_back(0.0f, 0.0f); lines.emplace_back(0.0f, 1.0f); // 实例位置(网格交叉点) std::vector<QVector3D> instances; float step = lvl.size / lvl.divisions; float halfSize = lvl.size * 0.5f; for (int i = 0; i <= lvl.divisions; ++i) { for (int j = 0; j <= lvl.divisions; ++j) { float x = -halfSize + i * step; float z = -halfSize + j * step; instances.emplace_back(x, 0.0f, z); } } lvl.lineCount = instances.size() * 2; // 创建VAO/VBO glGenVertexArrays(1, &lvl.vao); glGenBuffers(1, &lvl.vbo); glBindVertexArray(lvl.vao); // 顶点数据(单位线) GLuint lineVBO; glGenBuffers(1, &lineVBO); glBindBuffer(GL_ARRAY_BUFFER, lineVBO); glBufferData(GL_ARRAY_BUFFER, lines.size() * sizeof(QVector2D), lines.data(), GL_STATIC_DRAW); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(QVector2D), (void*)0); // 实例数据(位置) GLuint instanceVBO; glGenBuffers(1, &instanceVBO); glBindBuffer(GL_ARRAY_BUFFER, instanceVBO); glBufferData(GL_ARRAY_BUFFER, instances.size() * sizeof(QVector3D), instances.data(), GL_STATIC_DRAW); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(QVector3D), (void*)0); glVertexAttribDivisor(1, 1); // 告诉OpenGL这是每个实例更新一次的数据 glBindVertexArray(0); m_levels.push_back(lvl); 优化一下,实例化动态分级网格
07-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值