Given an array A of non-negative integers, half of the integers in A are odd, and half of the integers are even.
Sort the array so that whenever A[i] is odd, i is odd; and whenever A[i] is even, i is even.
You may return any answer array that satisfies this condition.
Example 1:
Input: [4,2,5,7] Output: [4,5,2,7] Explanation: [4,7,2,5], [2,5,4,7], [2,7,4,5] would also have been accepted.
Note:
2 <= A.length <= 20000A.length % 2 == 00 <= A[i] <= 1000
Approach #1 Brute Force 我的解法。
class Solution {
public int[] sortArrayByParityII(int[] A) {
int len = A.length;
int[] odd = new int[len/2];
int[] even = new int[len/2];
int k = 0;
int j = 0;
int[] ans = new int[len];
for(int i=0;i<len;i++){
if(A[i]%2 == 0){
even[j++] = A[i];
}
else{
odd[k++] = A[i];
}
}
for(int i= 0; i<len/2; i++){
ans[2*i] = even[i];
ans[2*i+1] = odd[i];
}
return ans;
}
}
分析
时间复杂度: O(N)
空间复杂度: O(N)
Approach 2: Read / Write Heads
class Solution {
public int[] sortArrayByParityII(int[] A) {
int j = 1;
for (int i = 0; i < A.length; i += 2) //先搞定偶数部分
if (A[i] % 2 == 1) {
while (A[j] % 2 == 1) //直到找到一个偶数记下其位置
j += 2;
// Swap A[i] and A[j] // 交换在奇数位置的偶数和在偶数位置的奇数
int tmp = A[i];
A[i] = A[j];
A[j] = tmp;
}
return A;
}
}
Modify the original array A in place.
Algorithm
For each even i, let's make A[i] even. To do it, we will draft an element from the odd slice. We pass j through the odd slice until we find an even element, then swap. Our invariant is maintained, so the algorithm is correct.
Complexity Analysis
-
Time Complexity: O(N), where NN is the length of
A. -
Space Complexity: O(1).

博客围绕非负整数数组的排序问题展开,数组中奇偶整数各占一半,需使数组元素奇偶位置对应。介绍了两种解法,一是暴力解法,时间复杂度和空间复杂度均为O(N);二是读写头法,原地修改数组,时间复杂度O(N),空间复杂度O(1)。
326

被折叠的 条评论
为什么被折叠?



