Leetcode 1. Two Sum, Java 解法

Given an array of integers, return indices of the two numbers such that they add up to a specific target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

Example:

Given nums = [2, 7, 11, 15], target = 9,

Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].

Approach #1 Brute Force 我的解法

class Solution {
    public int[] twoSum(int[] nums, int target) {
        int[] ans = new int[2];
        for(int i=0;i<nums.length;i++){
            int toAdd = target - nums[i];
            for(int j=0;j<nums.length;j++){
                if(nums[j]==toAdd&&j!=i){
                    ans[0] = j;
                    ans[1] = i;
                    
                }
            }
        }
        return ans;
    }
}
  • Time complexity : O(n^2). For each element, we try to find its complement by looping through the rest of array which takes O(n) time. Therefore, the time complexity is O(n^2).

  • Space complexity : O(1). 

Approach #2 Two-pass Hash Table

public int[] twoSum(int[] nums, int target) {
    Map<Integer, Integer> map = new HashMap<>();
    for (int i = 0; i < nums.length; i++) {
        map.put(nums[i], i);
    }
    for (int i = 0; i < nums.length; i++) {
        int complement = target - nums[i];
        if (map.containsKey(complement) && map.get(complement) != i) {
            return new int[] { i, map.get(complement) };
        }
    }
    throw new IllegalArgumentException("No two sum solution");
}
  • Time complexity : O(n)O(n). We traverse the list containing nn elements exactly twice. Since the hash table reduces the look up time to O(1)O(1), the time complexity is O(n)O(n).

  • Space complexity : O(n)O(n). The extra space required depends on the number of items stored in the hash table, which stores exactly nn elements. 

通过牺牲一部分内存空间来换取更快的运行速度,使用Hash Map来完成任务, 因为哈希表的查找元素时间接近O(1). 用到了map.get(), map.put() 这些之前用过的方法。

Approach #3 One-pass Hash Table

public int[] twoSum(int[] nums, int target) {
    Map<Integer, Integer> map = new HashMap<>();
    for (int i = 0; i < nums.length; i++) {
        int complement = target - nums[i];
        if (map.containsKey(complement)) {
            return new int[] { map.get(complement), i };
        }
        map.put(nums[i], i);
    }
    throw new IllegalArgumentException("No two sum solution");
  • Time complexity : O(n). We traverse the list containing nn elements only once. Each look up in the table costs only O(1) time.

  • Space complexity : O(n) The extra space required depends on the number of items stored in the hash table, which stores at most nn elements.

在进行循环并插入元素到表的过程中,同时检查complement 是否已经在表中,如果有解,直接返回。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值