POJ 2387 Til the Cows Come Home 【最短路(dijkstra)】

本篇介绍了一个经典的最短路径问题场景——奶牛Bessie如何尽快回到谷仓休息。通过Dijkstra算法实现,文章提供了完整的C++代码示例,并详细解释了算法流程与实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:

Bessie can get home by following trails 4, 3, 2, and 1.


题意:有N条路,以及T个不同路之间的关系,问从1到N所需的最短时间。
思路:很明显的最短路问题。
AC代码:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define INF 100000000
#define maxn 1001
using namespace std;
bool vis[maxn];   //是否访问过
int adj[maxn][maxn],dis[maxn];  //两点之间的距离  起点到此点的距离
int n, m;
void dijkstra(int v)
{
    int i, j, tem, minx;
    memset(vis, 0, sizeof(vis));
    for(i = 0; i <= n; i++)
        dis[i] = adj[v][i];
    vis[v] = 1;
    dis[v] = 0;
    for(i = 1; i < n; i++)
    {
        minx = INF;
        for(j = 1; j <= n; j++)
        {
            if(!vis[j] && dis[j] < minx)
            {
                minx = dis[j];
                tem = j;
            }
        }
        if(minx == INF) break;
        vis[tem] = 1;
        for(j = 1; j <= n; j++)
        {
            if(!vis[j] && adj[tem][j] != INF && dis[tem] + adj[tem][j] < dis[j])
            {
                dis[j] = dis[tem] + adj[tem][j];  //v->j == v->u + u->j
            }
        }
    }
}
int main()
{
    int i, j, x, y, w;
    while(~scanf("%d%d",&m,&n))
    {
        for(i = 1; i <= n; i++)
        {
            for(j = 1; j <= n; j++)
                if(i == j)  adj[i][j] = 0;
                else adj[i][j] = INF;
        } //初始化
        while(m--)
        {
            scanf("%d%d%d",&x,&y,&w);
            if(w < adj[x][y]) adj[x][y] = adj[y][x] = w;
        }
        dijkstra(1); //起点为1
        printf("%d\n",dis[n]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值