Java虚拟机之GC基础

本文探讨了了解Java中GC和内存分配的原因,如排查内存溢出、泄漏问题,监控调节GC瓶颈等。介绍了栈、堆和方法区的内存分配与回收特点,阐述了引用计数法和可达性分析算法,还讲解了强、软、弱、虚四种引用及对象回收的两次标记过程。

内存的动态分配与内存回收技术已经相当成熟,为什么我们还要去了解GC和内存分配呢?

  • 需要排查各种内存溢出、内存泄漏问题。
  • GC成为系统瓶颈时,需要实施必要的监控和调节。

程序计数器、虚拟机栈、本地方法栈3个区域生命周期同线程;
栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。
每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的,方法结束或者线程结束时就跟随着回收了。

Java堆和方法区则不一样,一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内存也可能不一样。
我们只有在程序处于运行期间时才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾收集器所关注的是这部分。

1.引用计数法(Reference Counting)
引用计数器加减
它很难解决对象之间相互循环引用的问题

2.可达性分析算法(Reachability Analysis)

GC Roots

  • 虚拟机栈(栈帧中的本地变量表)中引用的对象。
  • 方法区中类静态属性引用的对象。
  • 方法区中常量引用的对象。
  • 本地方法栈中JNI(即一般说的Native方法)引用的对象。

 

  • 强引用就是指在程序代码之中普遍存在的,类似“Object obj=new Object()”这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。
  • 软引用是用来描述一些还有用但并非必需的对象。对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中进行第二次回收。如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK1.2之后,提供了SoftReference类来实现软引用。
  • 弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2之后,提供了WeakReference类来实现弱引用。
  • 虚引用也称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2之后,提供了PhantomReference类来实现虚引用。

对象被回收,要经历两次标记过程:
首先GCRoot不可达,第一次标记并且进行一次筛选,判断此对象是否有必要执行finalize()方法。
当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。
当有必要执行finalize()方法,那么这个对象将会放置在一个叫做F-Queue的队列之中,并在稍后由一个由虚拟机自动建立的、低优先级的Finalizer线程去执行它。
这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束,这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能会导致F-Queue队列中其他对象永久处于等待,甚至导致整个内存回收系统崩溃。

finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移除出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的被回收了。

finalize()能做的所有工作,使用try-finally或者其他方式都可以做得更好、更及时,所以笔者建议大家完全可以忘掉Java语言中有这个方法的存在。

源码来自:https://pan.quark.cn/s/fdd21a41d74f 正方教务管理系统成绩推送 简介 使用本项目前: 早晨睡醒看一遍教务系统、上厕所看一遍教务系统、刷牙看一遍教务系统、洗脸看一遍教务系统、吃早餐看一遍教务系统、吃午饭看一遍教务系统、睡午觉前看一遍教务系统、午觉醒来看一遍教务系统、出门前看一遍教务系统、吃晚饭看一遍教务系统、洗澡看一遍教务系统、睡觉之前看一遍教务系统 使用本项目后: 成绩更新后自动发通知到微信 以节省您宝贵的时间 测试环境 正方教务管理系统 版本 V8.0、V9.0 如果你的教务系统页面与下图所示的页面完全一致或几乎一致,则代表你可以使用本项目。 目前支持的功能 主要功能 每隔 30 分钟自动检测一次成绩是否有更新,若有更新,将通过微信推送及时通知用户。 相较于教务系统增加了哪些功能? 显示成绩提交时间,即成绩何时被录入教务系统。 显示成绩提交人姓名,即成绩由谁录入进教务系统。 成绩信息按时间降序排序,确保最新的成绩始终在最上方,提升用户查阅效率。 计算 计算百分制 对于没有分数仅有级别的成绩,例如”及格、良好、优秀“,可以强制显示数字分数。 显示未公布成绩的课程,即已选课但尚未出成绩的课程。 使用方法 Fork 本仓库 → 开启 工作流读写权限 → → → → → 添加 Secrets → → → → → → Name = Name,Secret = 例子 程序会自动填充 尾部的 ,因此你无需重复添加 对于部分教务系统,可能需要在 中添加 路径,如: 开启 Actions → → → 运行 程序 → → 若你的程序正常运行且未报错,那么在此之后,程序将会每隔 30 分钟自动检测一次成绩是否有更新 若你看不懂上述使用...
综合能源系统零碳优化调度研究(Matlab代码实现)内容概要:本文围绕“综合能源系统零碳优化调度研究”,提供了基于Matlab代码实现的完整解决方案,重点探讨了在高比例可再生能源接入背景下,如何通过优化调度实现零碳排放目标。文中涉及多种先进优化算法(如改进遗传算法、粒子群优化、ADMM等)在综合能源系统中的应用,涵盖风光场景生成、储能配置、需求响应、微电网协同调度等多个关键技术环节,并结合具体案例(如压缩空气储能、光热电站、P2G技术等)进行建模与仿真分析,展示了从问题建模、算法设计到结果验证的全流程实现过程。; 适合人群:具备一定电力系统、能源系统或优化理论基础,熟悉Matlab/Simulink编程,从事新能源、智能电网、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①开展综合能源系统低碳/零碳调度的科研建模与算法开发;②复现高水平期刊(如SCI/EI)论文中的优化模型与仿真结果;③学习如何将智能优化算法(如遗传算法、灰狼优化、ADMM等)应用于实际能源系统调度问题;④掌握Matlab在能源系统仿真与优化中的典型应用方法。; 阅读建议:建议结合文中提供的Matlab代码与网盘资源,边学习理论模型边动手调试程序,重点关注不同优化算法在调度模型中的实现细节与参数设置,同时可扩展应用于自身研究课题中,提升科研效率与模型精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值