xynuoj 1247 fatmouse'trade

本文介绍了一种基于贪心算法解决猫鼠交易问题的方法,通过计算每单位猫食能换得的食物价值来决定最优交换策略,实现了用有限的猫食获得最大食物价值的目标。

老鼠准备了M磅猫食,准备拿这些猫食跟猫交换自己喜欢的食物。有N个房间,每个房间里面都有食物。你可以得到J[i]但你需要付出F[i]的猫食。要你计算你有M磅猫食可以获得最多食物的重量。

思路:贪心算法,求最优解。将J[i]/F[i]的值从大到小排列,总是先取最大的,就能保证能够得出的最大值


(1)如果当前老鼠剩下的猫粮大于兑换当前仓库所有的豆子的所需的猫粮量,则兑换该仓库的所有豆子,豆子总量增加该仓库总豆子量的值,所剩猫粮总量减去兑换当前仓库所有豆子所需猫粮量;

                (2)如果当前老鼠剩下的猫粮小于兑换当前仓库所有的豆子的所需的猫粮量,则兑换该仓库的所有豆子*所剩猫粮/所需的猫粮量,豆子总量增加所有豆子*所剩猫粮/所需的猫粮量(注意精度,这里的值可能会产生小数),所剩猫粮总量置0

#include <stdio.h>  
#include <algorithm>  
using namespace std;  
  
struct Node  
{  
    double j,f,p;  
} node[10000];   //结构体
  
int cmp(Node x,Node y)  
{  
    return x.p>y.p;//降序排列
}  
  
int main()  
{  
    int m,n;  
    while(~scanf("%d%d",&n,&m) && (m!=-1 || n!=-1))  
    {  
        double sum = 0,max = 0;  
        int i,j;  
        for(i = 0; i<m; i++)  
        {  
            scanf("%lf%lf",&node[i].j,&node[i].f);  
            node[i].p = node[i].j/node[i].f;  
        }  
        sort(node,node+m,cmp);  
        for(i = 0; i<m; i++)  
        {  
            if(n>node[i].f)  
            {  
                sum+=node[i].j;  
                n-=node[i].f;  
            }  
            else  
            {  
                sum+=node[i].p*n;  
                break;  
            }  
        }  
        printf("%.3lf\n",sum);  
    }  
  
    return 0;  
}  

C++

#include <stdio.h>  
#include <stdlib.h>  
struct Node  
{  
    double j,f,p;  
} node[10000];  
  
int cmp(const void *a,const void *b)  
{  
    return (*(Node *)a).p>(*(Node *)b).p?-1:1;    结构体比较!!!
}  
  
int main()  
{  
    int m,n;  
    while(~scanf("%d %d",&n,&m) && (m!=-1 || n!=-1))  
    {  
        double sum = 0;  
        int i;  
        for(i = 0; i<m; i++)  
        {  
            scanf("%lf %lf",&node[i].j,&node[i].f);  
            node[i].p = node[i].j/node[i].f;  
        }  
        qsort(node,m,sizeof(node[0]),cmp);  
        for(i=0; i<m; i++)  
        {  
            if(n>node[i].f)  
            {  
                sum+=node[i].j;  
                n-=node[i].f;  
            }  
            else  
            {  
                sum+=node[i].p*n;  
                break;  
            }  
        }  
        printf("%.3lf\n",sum);  
    }  
  
    return 0;  
}  

代码转载自:https://pan.quark.cn/s/f87b8041184b Language: 中文 欢迎来到戈戈圈! 当你点开这个存储库的时候,你会看到戈戈圈的图标↓ 本图片均在知识共享 署名-相同方式共享 3.0(CC BY-SA 3.0)许可协议下提供,如有授权遵照授权协议使用。 那么恭喜你,当你看到这个图标的时候,就代表着你已经正式成为了一名戈团子啦! 欢迎你来到这个充满爱与希望的大家庭! 「与大家创造更多快乐,与人们一起改变世界。 」 戈戈圈是一个在中国海南省诞生的创作企划,由王戈wg的妹妹于2018年7月14日正式公开。 戈戈圈的创作类型广泛,囊括插画、小说、音乐等各种作品类型。 戈戈圈的目前成员: Contributors 此外,支持戈戈圈及本企划的成员被称为“戈团子”。 “戈团子”一词最初来源于2015年出生的名叫“团子”的大熊猫,也因为一种由糯米包裹着馅料蒸熟而成的食品也名为“团子”,不仅有团圆之意,也蕴涵着团结友爱的象征意义和大家的美好期盼,因此我们最终于2021年初决定命名戈戈圈的粉丝为“戈团子”。 如果你对戈戈圈有兴趣的话,欢迎加入我们吧(σ≧︎▽︎≦︎)σ! 由于王戈wg此前投稿的相关视频并未详细说明本企划的信息,且相关视频的表述极其模糊,我们特此创建这个存储库,以文字的形式向大家介绍戈戈圈。 戈戈圈自2018年7月14日成立至今,一直以来都秉持着包容开放、和谐友善的原则。 我们深知自己的责任和使命,始终尊重社会道德习俗,严格遵循国家法律法规,为维护社会稳定和公共利益做出了积极的贡献。 因此,我们不允许任何人或组织以“戈戈圈”的名义在网络平台或现实中发布不当言论,同时我们也坚决反对过度宣传戈戈圈的行为,包括但不限于与戈戈圈无关的任何...
内容概要:本文详细介绍了一个基于YOLOv8的血细胞智能检测系统全流程开发指南,涵盖从环境搭建、数据准备、模型训练与验证到UI交互系统开发的完整实践过程。项目利用YOLOv8高精度、高速度的优势,实现对白细胞、红细胞和血小板的自动识别与分类,准确率超过93%,单张图像检测仅需0.3秒。通过公开或自建血细胞数据集,结合LabelImg标注工具和Streamlit开发可视化界面,构建了具备图像上传、实时检测、结果统计与异常提示功能的智能系统,并提供了论文撰写与成果展示建议,强化其在医疗场景中的应用价值。; 适合人群:具备一定Python编程与深度学习基础,从事计算机视觉、医疗AI相关研究或项目开发的高校学生、科研人员及工程技术人员,尤其适合需要完成毕业设计或医疗智能化项目实践的开发者。; 使用场景及目标:①应用于医院或检验机构辅助医生进行血涂片快速筛查,提升检测效率与一致性;②作为深度学习在医疗影像领域落地的教学案例,掌握YOLOv8在实际项目中的训练、优化与部署流程;③用于学术论文写作与项目成果展示,理解技术与临床需求的结合方式。; 阅读建议:建议按照“数据→模型→系统→应用”顺序逐步实践,重点理解数据标注规范、模型参数设置与UI集成逻辑,同时结合临床需求不断优化系统功能,如增加报告导出、多类别细粒度分类等扩展模块。
基于蒙特卡洛,copula函数,fuzzy-kmeans获取6个典型场景进行随机优化多类型电动汽车采用分时电价调度,考虑上级电网出力、峰谷差惩罚费用、风光调度、电动汽车负荷调度费用和网损费用内容概要:本文围绕多类型电动汽车在分时电价机制下的优化调度展开研究,采用蒙特卡洛模拟、Copula函数和模糊K-means聚类方法获取6个典型场景,并在此基础上进行随机优化。模型综合考虑了上级电网出力、峰谷差惩罚费用、风光可再生能源调度、电动汽车负荷调度成本以及电网网损费用等多个关键因素,旨在实现电力系统运行的经济性与稳定性。通过Matlab代码实现相关算法,验证所提方法的有效性与实用性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源、智能电网、电动汽车调度相关工作的工程技术人员。; 使用场景及目标:①用于研究大规模电动汽车接入电网后的负荷调控策略;②支持含风光等可再生能源的综合能源系统优化调度;③为制定合理的分时电价政策及降低电网峰谷差提供技术支撑;④适用于学术研究、论文复现与实际项目仿真验证。; 阅读建议:建议读者结合文中涉及的概率建模、聚类分析与优化算法部分,动手运行并调试Matlab代码,深入理解场景生成与随机优化的实现流程,同时可扩展至更多元化的应用场景如V2G、储能协同调度等。
<think>嗯,用户想了解FatMouse's Speed这个算法题的解法,可能是在准备竞赛或者学习动态规划。首先,我需要回忆一下这个题目的内容。根据引用3提到的,这是一个简单的DP问题,测试数据较松,O(n²)算法也能过。题目应该是要求找出最长的子序列,满足老鼠的体重递增而速度递减。 接下来,我需要确定问题具体要求。比如输入是多个老鼠的体重和速度,要求找出最长的序列,其中每只老鼠比前一只更重但更慢。同时可能需要输出这个子序列的顺序。这和最长递增子序列(LIS)问题类似,但有两个条件需要考虑。 然后,思考如何建模。通常处理这类问题的方法是先排序,将其中一个条件固定,转化为另一个条件的最长序列。例如,按体重递增排序,如果体重相同则按速度递减,这样问题转化为在速度中找最长递减子序列,但必须保证原序列中的体重严格递增。不过,可能存在相同体重的情况,这时候需要处理。例如,排序时应确保相同体重的老鼠按速度降序排列,这样在后续处理时,相同体重的不会干扰,因为后面的速度更小的话也无法满足体重递增的条件。 接下来是动态规划的思路。每个位置i的最长子序列长度可以由前面所有j<i且满足体重严格小于i且速度严格大于i的位置j的最大值加1。这样时间复杂度是O(n²),而题目中n最多是1000,所以应该是可行的。 然后考虑如何记录路径,以便最后输出选中的老鼠的顺序。这通常需要维护一个pre数组,记录每个位置的前驱节点,最后从最大长度的位置回溯。 另外,需要注意输入输出的格式。输入每行两个整数,可能有多组数据,直到文件结束。输出应该是最长子序列的长度,以及按顺序的老鼠编号(可能按原始输入的顺序,所以排序前需要记录原始位置)。 现在,验证这些思路是否正确。例如,排序是否正确处理了体重相同的情况。如果两只老鼠体重相同,即使速度不同,也不能出现在同一个序列中,因为体重必须严格递增。因此,在排序时,应该将体重相同的按速度降序排列,这样在处理时,后面的老鼠速度更小,但体重相同,不会被选中,从而避免错误。 然后,动态规划的状态转移是否正确。每个元素dp[i]表示以第i只老鼠结尾的最长子序列长度。状态转移需要遍历前面所有符合条件的元素,并取最大值加1。 路径记录的实现需要仔细处理。每个位置i的pre[i]存储前一个的位置,这样最后找到最长子序列的末尾后,可以逆序回溯得到正确的顺序。 另外,初始情况下,每个dp[i]至少是1,即自身构成一个子序列。然后逐步更新。 最后,代码的结构大致是先读取所有数据,记录原始索引,然后排序,接着进行动态规划,同时记录路径,最后找到最长子序列,并逆序输出。 可能的问题点包括:排序是否合理,如何处理体重相同的情况,动态规划条件是否正确,路径记录是否正确,以及输出时的顺序是否正确。例如,在排序后,原始索引可能需要保存,以便输出时使用原始的顺序编号。 测试用例方面,比如输入几个老鼠的数据,验证是否得到正确的最长子序列。例如,输入三只老鼠:(体重,速度)分别为(6008, 1300), (6000, 2100), (500, 2000)。排序后按体重递增,所以顺序是500,6000,6008。对应的速度是2000,2100,1300。此时最长子序列是500→6000→6008,对应的速度是2000→2100→1300,但因为速度需要递减,所以中间这个不符合,所以正确的最长子序列应该是500→6008,长度为2。或者可能需要更详细的测试。这说明在动态规划时需要严格检查体重和速度的条件。 综上,正确的解法应该是排序后应用动态规划,注意处理相同体重的情况,并且正确记录路径。</think>### FatMouse's Speed 算法题解 #### 问题描述 给定一组老鼠的体重和速度数据,要求找到**最长的子序列**,满足以下条件: 1. 体重严格递增 2. 速度严格递减 3. 输出子序列长度及具体老鼠的原始输入顺序编号 #### 解题思路 1. **预处理与排序** 将老鼠按体重升序排序,若体重相同则按速度降序排序。这一步固定体重顺序,将问题简化为**在速度序列中寻找最长递减子序列**。 2. **动态规划建模** - 定义 $dp[i]$ 表示以第 $i$ 只老鼠结尾的最长子序列长度 - 状态转移方程: $$dp[i] = \max_{\substack{j < i \\ \text{speed}[j] > \text{speed}[i]}} (dp[j] + 1)$$ - 同时记录路径 $pre[i]$ 表示前驱节点 3. **路径回溯** 通过 $pre$ 数组从最长子序列末尾回溯到起始位置,最终逆序输出原始编号。 #### 代码实现 ```python mice = [] index = 1 while True: try: w, s = map(int, input().split()) mice.append((w, s, index)) # (weight, speed, original_index) index += 1 except EOFError: break # 排序:体重升序,速度降序 mice.sort(key=lambda x: (x[0], -x[1])) n = len(mice) dp = [1] * n pre = [-1] * n max_len = 1 end_pos = 0 for i in range(n): for j in range(i): if mice[j][0] < mice[i][0] and mice[j][1] > mice[i][1] and dp[j] + 1 > dp[i]: dp[i] = dp[j] + 1 pre[i] = j if dp[i] > max_len: max_len = dp[i] end_pos = i # 路径回溯 path = [] while end_pos != -1: path.append(mice[end_pos][2]) end_pos = pre[end_pos] print(max_len) for num in reversed(path): print(num) ``` #### 关键分析 1. **时间复杂度** 动态规划部分为 $O(n^2)$,适用于 $n \leq 1000$ 的数据规模[^3] 2. **排序技巧** 通过将体重相同的元素按速度降序排列,确保后续处理时不会选择到体重相同的元素 3. **路径记录** 通过 $pre$ 数组实现路径回溯,需注意最终输出顺序要逆序 #### 典型测试用例 输入: ``` 6008 1300 6000 2100 500 2000 ``` 输出: ``` 2 3 1 ``` 说明:选择第3只(500g/2000cm/s)和第1只(6008g/1300cm/s)形成有效序列
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值