xynuoj 1247 fatmouse'trade

本文介绍了一种基于贪心算法解决猫鼠交易问题的方法,通过计算每单位猫食能换得的食物价值来决定最优交换策略,实现了用有限的猫食获得最大食物价值的目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

老鼠准备了M磅猫食,准备拿这些猫食跟猫交换自己喜欢的食物。有N个房间,每个房间里面都有食物。你可以得到J[i]但你需要付出F[i]的猫食。要你计算你有M磅猫食可以获得最多食物的重量。

思路:贪心算法,求最优解。将J[i]/F[i]的值从大到小排列,总是先取最大的,就能保证能够得出的最大值


(1)如果当前老鼠剩下的猫粮大于兑换当前仓库所有的豆子的所需的猫粮量,则兑换该仓库的所有豆子,豆子总量增加该仓库总豆子量的值,所剩猫粮总量减去兑换当前仓库所有豆子所需猫粮量;

                (2)如果当前老鼠剩下的猫粮小于兑换当前仓库所有的豆子的所需的猫粮量,则兑换该仓库的所有豆子*所剩猫粮/所需的猫粮量,豆子总量增加所有豆子*所剩猫粮/所需的猫粮量(注意精度,这里的值可能会产生小数),所剩猫粮总量置0

#include <stdio.h>  
#include <algorithm>  
using namespace std;  
  
struct Node  
{  
    double j,f,p;  
} node[10000];   //结构体
  
int cmp(Node x,Node y)  
{  
    return x.p>y.p;//降序排列
}  
  
int main()  
{  
    int m,n;  
    while(~scanf("%d%d",&n,&m) && (m!=-1 || n!=-1))  
    {  
        double sum = 0,max = 0;  
        int i,j;  
        for(i = 0; i<m; i++)  
        {  
            scanf("%lf%lf",&node[i].j,&node[i].f);  
            node[i].p = node[i].j/node[i].f;  
        }  
        sort(node,node+m,cmp);  
        for(i = 0; i<m; i++)  
        {  
            if(n>node[i].f)  
            {  
                sum+=node[i].j;  
                n-=node[i].f;  
            }  
            else  
            {  
                sum+=node[i].p*n;  
                break;  
            }  
        }  
        printf("%.3lf\n",sum);  
    }  
  
    return 0;  
}  

C++

#include <stdio.h>  
#include <stdlib.h>  
struct Node  
{  
    double j,f,p;  
} node[10000];  
  
int cmp(const void *a,const void *b)  
{  
    return (*(Node *)a).p>(*(Node *)b).p?-1:1;    结构体比较!!!
}  
  
int main()  
{  
    int m,n;  
    while(~scanf("%d %d",&n,&m) && (m!=-1 || n!=-1))  
    {  
        double sum = 0;  
        int i;  
        for(i = 0; i<m; i++)  
        {  
            scanf("%lf %lf",&node[i].j,&node[i].f);  
            node[i].p = node[i].j/node[i].f;  
        }  
        qsort(node,m,sizeof(node[0]),cmp);  
        for(i=0; i<m; i++)  
        {  
            if(n>node[i].f)  
            {  
                sum+=node[i].j;  
                n-=node[i].f;  
            }  
            else  
            {  
                sum+=node[i].p*n;  
                break;  
            }  
        }  
        printf("%.3lf\n",sum);  
    }  
  
    return 0;  
}  

内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
<think>嗯,用户想了解FatMouse's Speed这个算法题的解法,可能是在准备竞赛或者学习动态规划。首先,我需要回忆一下这个题目的内容。根据引用3提到的,这是一个简单的DP问题,测试数据较松,O(n²)算法也能过。题目应该是要求找出最长的子序列,满足老鼠的体重递增而速度递减。 接下来,我需要确定问题具体要求。比如输入是多个老鼠的体重和速度,要求找出最长的序列,其中每只老鼠比前一只更重但更慢。同时可能需要输出这个子序列的顺序。这和最长递增子序列(LIS)问题类似,但有两个条件需要考虑。 然后,思考如何建模。通常处理这类问题的方法是先排序,将其中一个条件固定,转化为另一个条件的最长序列。例如,按体重递增排序,如果体重相同则按速度递减,这样问题转化为在速度中找最长递减子序列,但必须保证原序列中的体重严格递增。不过,可能存在相同体重的情况,这时候需要处理。例如,排序时应确保相同体重的老鼠按速度降序排列,这样在后续处理时,相同体重的不会干扰,因为后面的速度更小的话也无法满足体重递增的条件。 接下来是动态规划的思路。每个位置i的最长子序列长度可以由前面所有j<i且满足体重严格小于i且速度严格大于i的位置j的最大值加1。这样时间复杂度是O(n²),而题目中n最多是1000,所以应该是可行的。 然后考虑如何记录路径,以便最后输出选中的老鼠的顺序。这通常需要维护一个pre数组,记录每个位置的前驱节点,最后从最大长度的位置回溯。 另外,需要注意输入输出的格式。输入每行两个整数,可能有多组数据,直到文件结束。输出应该是最长子序列的长度,以及按顺序的老鼠编号(可能按原始输入的顺序,所以排序前需要记录原始位置)。 现在,验证这些思路是否正确。例如,排序是否正确处理了体重相同的情况。如果两只老鼠体重相同,即使速度不同,也不能出现在同一个序列中,因为体重必须严格递增。因此,在排序时,应该将体重相同的按速度降序排列,这样在处理时,后面的老鼠速度更小,但体重相同,不会被选中,从而避免错误。 然后,动态规划的状态转移是否正确。每个元素dp[i]表示以第i只老鼠结尾的最长子序列长度。状态转移需要遍历前面所有符合条件的元素,并取最大值加1。 路径记录的实现需要仔细处理。每个位置i的pre[i]存储前一个的位置,这样最后找到最长子序列的末尾后,可以逆序回溯得到正确的顺序。 另外,初始情况下,每个dp[i]至少是1,即自身构成一个子序列。然后逐步更新。 最后,代码的结构大致是先读取所有数据,记录原始索引,然后排序,接着进行动态规划,同时记录路径,最后找到最长子序列,并逆序输出。 可能的问题点包括:排序是否合理,如何处理体重相同的情况,动态规划条件是否正确,路径记录是否正确,以及输出时的顺序是否正确。例如,在排序后,原始索引可能需要保存,以便输出时使用原始的顺序编号。 测试用例方面,比如输入几个老鼠的数据,验证是否得到正确的最长子序列。例如,输入三只老鼠:(体重,速度)分别为(6008, 1300), (6000, 2100), (500, 2000)。排序后按体重递增,所以顺序是500,6000,6008。对应的速度是2000,2100,1300。此时最长子序列是500→6000→6008,对应的速度是2000→2100→1300,但因为速度需要递减,所以中间这个不符合,所以正确的最长子序列应该是500→6008,长度为2。或者可能需要更详细的测试。这说明在动态规划时需要严格检查体重和速度的条件。 综上,正确的解法应该是排序后应用动态规划,注意处理相同体重的情况,并且正确记录路径。</think>### FatMouse's Speed 算法题解 #### 问题描述 给定一组老鼠的体重和速度数据,要求找到**最长的子序列**,满足以下条件: 1. 体重严格递增 2. 速度严格递减 3. 输出子序列长度及具体老鼠的原始输入顺序编号 #### 解题思路 1. **预处理与排序** 将老鼠按体重升序排序,若体重相同则按速度降序排序。这一步固定体重顺序,将问题简化为**在速度序列中寻找最长递减子序列**。 2. **动态规划建模** - 定义 $dp[i]$ 表示以第 $i$ 只老鼠结尾的最长子序列长度 - 状态转移方程: $$dp[i] = \max_{\substack{j < i \\ \text{speed}[j] > \text{speed}[i]}} (dp[j] + 1)$$ - 同时记录路径 $pre[i]$ 表示前驱节点 3. **路径回溯** 通过 $pre$ 数组从最长子序列末尾回溯到起始位置,最终逆序输出原始编号。 #### 代码实现 ```python mice = [] index = 1 while True: try: w, s = map(int, input().split()) mice.append((w, s, index)) # (weight, speed, original_index) index += 1 except EOFError: break # 排序:体重升序,速度降序 mice.sort(key=lambda x: (x[0], -x[1])) n = len(mice) dp = [1] * n pre = [-1] * n max_len = 1 end_pos = 0 for i in range(n): for j in range(i): if mice[j][0] < mice[i][0] and mice[j][1] > mice[i][1] and dp[j] + 1 > dp[i]: dp[i] = dp[j] + 1 pre[i] = j if dp[i] > max_len: max_len = dp[i] end_pos = i # 路径回溯 path = [] while end_pos != -1: path.append(mice[end_pos][2]) end_pos = pre[end_pos] print(max_len) for num in reversed(path): print(num) ``` #### 关键分析 1. **时间复杂度** 动态规划部分为 $O(n^2)$,适用于 $n \leq 1000$ 的数据规模[^3] 2. **排序技巧** 通过将体重相同的元素按速度降序排列,确保后续处理时不会选择到体重相同的元素 3. **路径记录** 通过 $pre$ 数组实现路径回溯,需注意最终输出顺序要逆序 #### 典型测试用例 输入: ``` 6008 1300 6000 2100 500 2000 ``` 输出: ``` 2 3 1 ``` 说明:选择第3只(500g/2000cm/s)和第1只(6008g/1300cm/s)形成有效序列
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值