Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 27506 Accepted Submission(s): 9586
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8HintHuge input, scanf and dynamic programming is recommended.
Author
JGShining(极光炫影)
题解:这道题是HDU1003的进阶版,当m=1时即HDU1003原题,通过观察题目我们很容易想到维护两个量的二维dp公式dp[i][j]表示考虑到前j位,划分i段的最大值,转移方程为dp[i][j]=max(dp[i][j-1],max(dp[i-1][k])(i<k<j)),但是再看一下空间限制和数据范围,这个二维数组要开到1e12,显然是会MLE的,因此,我们需要优化一下,也就是滚动更新dp数组,将这个二维数组降到1维。节省空间,即只需要两个一维数组维护dp[i][j-1]和max(dp[i-1][k])j即可;
代码如下
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
int a[1000005];
int d[1000005];
int p[1000005];
int mi=-1000000000;
int main()
{
int n,m;
while(scanf("%d %d",&m,&n)!=EOF)
{
int mx;
memset(d,0,sizeof(d));
memset(p,0,sizeof(p));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=m;i++)
{
mx=mi;
int j;
for(j=i;j<=n;j++)
{
d[j]=max(d[j-1],p[j-1])+a[j];
p[j-1]=mx;
mx=max(mx,d[j]);
}
p[j-1]=mx;
}
cout<<mx<<endl;
}
//cout << "Hello world!" << endl;
return 0;
}