HDU 1024 MaxSumPlusPlus(进阶一维dp)

本文介绍了一个基于动态规划的优化算法解决 MaxSumPlusPlus 问题的方法,该问题要求找出序列中 m 对下标,使得这些下标定义的子序列之和最大。通过对原始二维动态规划算法的空间优化,将其降至一维,从而有效解决了大规模数据输入下的内存限制问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 27506    Accepted Submission(s): 9586


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
 

Author
JGShining(极光炫影)
 
题解:这道题是HDU1003的进阶版,当m=1时即HDU1003原题,通过观察题目我们很容易想到维护两个量的二维dp公式dp[i][j]表示考虑到前j位,划分i段的最大值,转移方程为dp[i][j]=max(dp[i][j-1],max(dp[i-1][k])(i<k<j)),但是再看一下空间限制和数据范围,这个二维数组要开到1e12,显然是会MLE的,因此,我们需要优化一下,也就是滚动更新dp数组,将这个二维数组降到1维。节省空间,即只需要两个一维数组维护dp[i][j-1]和max(dp[i-1][k])j即可;

代码如下
#include <iostream>
#include <bits/stdc++.h>

using namespace std;

int a[1000005];
int d[1000005];
int p[1000005];
int mi=-1000000000;


int main()
{
    int n,m;
    while(scanf("%d %d",&m,&n)!=EOF)
    {
        int mx;
        memset(d,0,sizeof(d));
        memset(p,0,sizeof(p));
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        for(int i=1;i<=m;i++)
        {
            mx=mi;
            int j;
            for(j=i;j<=n;j++)
            {
                d[j]=max(d[j-1],p[j-1])+a[j];
                p[j-1]=mx;
                mx=max(mx,d[j]);
            }
            p[j-1]=mx;
        }
        cout<<mx<<endl;
    }
    //cout << "Hello world!" << endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值