1. 99. 岛屿数量(深度优先遍历)
本题思路,是用遇到的一个没有遍历过的节点陆地,计数器加一,然后把该节点陆地所能遍历到的陆地都标记上。在遇到标记过陆地节点和海洋节点都直接跳过,这样计数器就是最终岛屿的数量。
direction = [[0,1],[0,-1],[-1,0],[1,0]] #四个方向:上下左右
def dfs(grid,visited,x,y):
#对一块陆地进行深度优先遍历并标记
for i,j in direction:
next_x = x + i #上下
next_y = y + j #左右
#下标越界,跳过不进入递归
if next_x < 0 or next_y < 0 or next_x >= len(grid) or next_y >= len(grid[0]):
continue
#未访问过的陆地,标记并调用深度优先遍历
if not visited[next_x][next_y] and grid[next_x][next_y] == 1:
visited[next_x][next_y] = True
dfs(grid,visited,next_x,next_y)
n,m = map(int,input().split())
grid = []
for _ in range(n):
grid.append(list(map(int,input().split())))
count = 0
#访问表
visited = [[False] * m for _ in range(n)]
for i in range(n):
for j in range(m):
#判断
if grid[i][j] == 1 and not visited[i][j]:
count += 1
visited[i][j] = True
dfs(grid,visited,i,j)
print(count)
direction = [[0,1],[0,-1],[1,0],[-1,0]]
def dfs(grid,visited,x,y):
#终止条件
if visited[x][y] or grid[x][y] == 0:
#访问过或者遇到海洋
return
visited[x][y] = True
for i,j in direction:
next_x = x + i
next_y = y + j
if next_x < 0 or next_x >= len(grid) or next_y < 0 or next_y >= len(grid[0]):
continue
dfs(grid,visited,next_x,next_y)
n,m = map(int,input().split())
grid = []
for _ in range(n):
grid.append(list(map(int,input().split())))
res = 0
visited = [[False] * m for _ in range(n)]
for i in range(n):
for j in range(m):
if not visited[i][j] and grid[i][j] == 1:
res += 1
dfs(grid,visited,i,j)
print(res)
2. 99. 岛屿数量(广度优先遍历)
只要节点加入队列就代表走过,就需要标记,而不是从队列拿出来的时候再标记走过。
from collections import deque
direction = [[0,1],[0,-1],[1,0],[-1,0]]
def bfs(grid,visited,x,y):
queue = deque()
queue.append((x,y))
#只要入队列就标记访问过
visited[x][y] = True
while queue:
#队列不为空
cur = queue.popleft()
cur_x = cur[0]
cur_y = cur[1]
for i,j in direction:
next_x = cur_x + i
next_y = cur_y + j
if next_x < 0 or next_x >= len(grid) or next_y < 0 or next_y >= len(grid[0]):
continue
if not visited[next_x][next_y] and grid[next_x][next_y] == 1:
queue.append((next_x,next_y))
visited[next_x][next_y] = True
n,m = map(int,input().split())
grid = []
for _ in range(n):
grid.append(list(map(int,input().split())))
res = 0
visited = [[False] * m for _ in range(n)]
for i in range(n):
for j in range(m):
if not visited[i][j] and grid[i][j] == 1:
res += 1
bfs(grid,visited,i,j)
print(res)
3. 100. 岛屿的最大面积
题目链接:100. 岛屿的最大面积
文档讲解: 代码随想录
这道题在上一题的基础上需要统计岛屿的面积。
#深度优先遍历
direction = [[0,1],[0,-1],[1,0],[-1,0]]
count = 0
def dfs(grid,visited,x,y,res):
#定义全局变量
global count
for i,j in direction:
next_x = x + i
next_y = y + j
if next_x < 0 or next_x >= len(grid) or next_y < 0 or next_y >= len(grid[0]):
continue
if not visited[next_x][next_y] and grid[next_x][next_y] == 1:
visited[next_x][next_y] = True
count += 1
dfs(grid,visited,next_x,next_y,res)
n,m = map(int,input().split())
grid = []
for _ in range(n):
grid.append(list(map(int,input().split())))
visited = [[False] * m for _ in range(n)]
max_res = 0
for i in range(n):
for j in range(m):
if not visited[i][j] and grid[i][j] == 1:
count = 1
visited[i][j] = True
dfs(grid,visited,i,j,0)
max_res = max(max_res,count)
print(max_res)
在 Python 中,global 关键字用于在函数内部声明一个变量是全局变量,而不是函数内部的局部变量。使用 global 可以使得函数内部对变量的修改反映到函数外部的全局范围。
#广度优先遍历
from collections import deque
direction = [[0,1],[0,-1],[1,0],[-1,0]]
count = 0
def bfs(grid,visited,x,y):
global count
que = deque()
que.append([x,y])
visited[x][y] = True
while que:
cur = que.popleft()
for i,j in direction:
next_x = cur[0] + i
next_y = cur[1] + j
if next_x < 0 or next_x >= len(grid) or next_y < 0 or next_y >= len(grid[0]):
continue
if not visited[next_x][next_y] and grid[next_x][next_y] == 1:
count += 1
que.append([next_x,next_y])
visited[next_x][next_y] = True
n,m = map(int,input().split())
grid = []
for _ in range(n):
grid.append(list(map(int,input().split())))
visited = [[False] * m for _ in range(n)]
res = 0
for i in range(n):
for j in range(m):
if not visited[i][j] and grid[i][j] == 1:
count = 1
bfs(grid,visited,i,j)
res = max(res,count)
print(res)
363

被折叠的 条评论
为什么被折叠?



