ACM-ICPC 2018 南京赛区网络预赛 AC Challenge (dp+状态压缩)

本文探讨了一个竞赛编程场景,其中参赛者需要解决一系列问题以获得最高分数。通过动态规划和状态压缩技巧,文章详细解释了如何计算在遵循特定提交规则的情况下可能获得的最大分数。

Dlsj is competing in a contest with n(0<n≤20)n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit iii-th problem if and only if he has submitted (and passed, of course) sis_isi​ problems, the pi,1p_{i, 1}pi,1​-th, pi,2p_{i, 2}pi,2​-th, ........., pi,sip_{i, s_i}pi,si​​-th problem before.(0<pi,j≤n,0<j≤si,0<i≤n)(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set

If he submits and passes the iii-th problem on ttt-th minute(or the ttt-th problem he solve is problem iii), he can get t×ai+bit \times a_i + b_it×ai​+bi​ points. (∣ai∣,∣bi∣≤109)(|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nnn, which is the number of problems.

Then follows nnn lines, the iii-th line contains si+3s_i + 3si​+3 integers, ai,bi,si,p1,p2,...,psia_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1×5+6=111 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2×4+5=132 \times 4 + 5 = 132×4+5=13 points.

On the third minute, Dlsj submitted the third problem, and get 3×3+4=133 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4×2+3=114 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5×1+2=75 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=5511+13+13+11+7=55 points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

题目来源

ACM-ICPC 2018 南京赛区网络预赛

解题思路:

dp题

用二进制数表示已经做了哪些题,读入时用problem[].need表示做这道题时需要已经做了哪些题。

dp从小到大扫一遍,即1->2^n-1。

当i=11010(二进制)时,

dp[11010]是在dp[11000]+第二题得分、dp[10010]+第四题得分、dp[01010]+第5题得分中取最大值,以此类推。

先处理小数,再处理大数。当处理大数时,小数已经处理好了(可以利用了)

在dp的同时需要判断是否满足题目所给的做题顺序。i(二进制)所含1的数量为当前做题数(时间)。


STL状态压缩神器:

bitset(使用时注意,转化出来的二进制数是倒着的) 

 c++ bitset类用法

C++ bitset 用法


#include<stdio.h>
#include<bitset>
using namespace std;

struct Problem
{
    int a,b,s,need;
}problem[25];
long long state[1<<22];

int main()
{
    int n,p;
    long long answer=0;
    scanf("%d",&n);
    int maxn=1<<n;
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d%d",&problem[i].a,&problem[i].b,&problem[i].s);
        problem[i].need=0;
        for(int j=1;j<=problem[i].s;j++)
        {
            scanf("%d",&p);
            problem[i].need|=1<<p-1;
        }
    }
    for(int i=1;i<=maxn;i++)
    {

        bitset<20> put(i);/**从0开始放**/
        int time=put.count();
        for(int j=0;j<n;j++)
        {
            if(put[j]==1)
            {
                int change=(1<<j)^i;
                int now=j+1;
                //printf("j=%d now=%d change=%d\n",j,now,change);
                //printf("problem[now].need=%d change=%d problem[now].need&change=%d\n",problem[now].need,change,problem[now].need&change);
                if(change==0)
                {
                    if((problem[now].need&change)==problem[now].need)
                        state[i]=max(state[i],state[change]+time*problem[now].a+problem[now].b);
                    else
                        continue;
                }
                else if(state[change]&&(problem[now].need&change)==problem[now].need)
                {
                    state[i]=max(state[i],state[change]+time*problem[now].a+problem[now].b);
                }

                answer=max(answer,state[i]);
                //printf("state[%d]=%lld answer=%lld\n",i,state[i],answer);
            }
        }
    }
    printf("%lld\n",answer);
    return 0;
}

 

基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值