与传统监督学习不同,直接模仿学习在不同时刻所面临的数据分布可能不同.试设计一个考虑不同时刻数据分布变化的模仿学习算法


import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.neighbors import KernelDensity
import matplotlib.pyplot as plt
class TimeAwareImitationLearning:
def __init__(self, state_dim, action_dim, hidden_dim=64, device='cpu'):
"""
初始化时间感知的模仿学习算法
state_dim: 状态维度
action_dim: 动作维度
hidden_dim: 隐藏层维度
"""
self.state_dim = state_dim
self.action_dim = action_dim
self.device = device
# 策略网络 - 模仿专家行为
self.policy = nn.Sequential(
nn.Linear(state_dim + 1, hidden_dim), # +1 是为了包含时间信息
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim)
).to(device)
# 判别器网络 - 区分专家和策略生成的轨迹
self.discriminator = nn.Sequential(
nn.Linear(state_dim + action_dim + 1, hidden_dim), # +1 是为了包含时间信息
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1),
nn.Sigmoid()
).to(device)
# 优化器
self.policy_optimizer = optim.Adam(self.policy.parameters(), lr=1e-3)
self.discriminator_optimizer = optim.Adam(self.discriminator.parameters(), lr=1e-3)
# 记录训练过程
self.train_losses = []
def _compute_time_weights(self, expert_times, current_time, sigma=1.0):
"""
计算时间权重,距离当前时间越近的样本权重越大
"""
time_diffs = np.abs(expert_times - current_time)
weights = np.exp(-time_diffs / (2 * sigma**2))
return weights / np.sum(weights)
def _compute_mmd_loss(self, expert_states, policy_states, times, current_time):
"""
计算最大均值差异(MMD)损失,衡量分布差异
"""
# 计算时间权重
weights = self._compute_time_weights(times, current_time)
# 对专家状态应用时间权重
weighted_expert_states = expert_states * weights.reshape(-1, 1)
# 计算MMD
expert_kernel = rbf_kernel(weighted_expert_states, weighted_expert_states)
policy_kernel = rbf_kernel(policy_states, policy_states)
cross_kernel = rbf_kernel(weighted_expert_states, policy_states)
mmd = np.mean(expert_kernel) + np.mean(policy_kernel) - 2 * np.mean(cross_kernel)
return mmd
def train(self, expert_states, expert_actions, expert_times, epochs=100, batch_size=64):
"""
训练时间感知的模仿学习模型
expert_states: 专家状态序列 [num_samples, state_dim]
expert_actions: 专家动作序列 [num_samples, action_dim]
expert_times: 专家时间戳 [num_samples]
"""
num_samples = expert_states.shape[0]
expert_states_tensor = torch.FloatTensor(expert_states).to(self.device)
expert_actions_tensor = torch.FloatTensor(expert_actions).to(self.device)
expert_times_tensor = torch.FloatTensor(expert_times).reshape(-1, 1).to(self.device)
for epoch in range(epochs):
# 当前"时间" - 使用训练轮次的比例作为时间表示
current_time = epoch / epochs
# 生成策略动作
policy_actions = []
for i in range(0, num_samples, batch_size):
batch_states = expert_states_tensor[i:i+batch_size]
batch_times = torch.full((batch_states.shape[0], 1), current_time).to(self.device)
policy_action = self.policy(torch.cat([batch_states, batch_times], dim=1))
policy_actions.append(policy_action.detach().cpu().numpy())
policy_actions = np.vstack(policy_actions)
# 计算MMD损失
mmd_loss = self._compute_mmd_loss(
expert_states, policy_actions, expert_times, current_time
)
# 训练判别器
for _ in range(5): # 判别器训练多次
# 随机采样批次
indices = np.random.randint(0, num_samples, batch_size)
batch_expert_states = expert_states_tensor[indices]
batch_expert_actions = expert_actions_tensor[indices]
batch_expert_times = expert_times_tensor[indices]
# 生成策略动作
batch_times = torch.full((batch_size, 1), current_time).to(self.device)
batch_policy_actions = self.policy(torch.cat([batch_expert_states, batch_times], dim=1))
# 计算判别器损失
expert_input = torch.cat([batch_expert_states, batch_expert_actions, batch_expert_times], dim=1)
policy_input = torch.cat([batch_expert_states, batch_policy_actions, batch_times], dim=1)
expert_output = self.discriminator(expert_input)
policy_output = self.discriminator(policy_input)
# 判别器损失 (最大化区分能力)
d_loss = -torch.mean(torch.log(expert_output + 1e-8) + torch.log(1 - policy_output + 1e-8))
self.discriminator_optimizer.zero_grad()
d_loss.backward()
self.discriminator_optimizer.step()
# 训练策略网络
for _ in range(1): # 策略网络训练较少次数
indices = np.random.randint(0, num_samples, batch_size)
batch_states = expert_states_tensor[indices]
batch_times = torch.full((batch_size, 1), current_time).to(self.device)
# 生成策略动作
actions = self.policy(torch.cat([batch_states, batch_times], dim=1))
# 计算策略损失 (最小化判别器的区分能力)
policy_input = torch.cat([batch_states, actions, batch_times], dim=1)
policy_output = self.discriminator(policy_input)
# 策略损失 + MMD正则化
p_loss = -torch.mean(torch.log(policy_output + 1e-8)) + 0.1 * mmd_loss
self.policy_optimizer.zero_grad()
p_loss.backward()
self.policy_optimizer.step()
# 记录损失
self.train_losses.append(p_loss.item())
if epoch % 100 == 0:
print(f"Epoch {epoch}, Loss: {p_loss.item():.4f}, MMD: {mmd_loss:.4f}")
def predict(self, state, time):
"""
根据当前状态和时间预测动作
"""
state_tensor = torch.FloatTensor(state).reshape(1, -1).to(self.device)
time_tensor = torch.FloatTensor([time]).reshape(1, 1).to(self.device)
with torch.no_grad():
action = self.policy(torch.cat([state_tensor, time_tensor], dim=1))
return action.cpu().numpy()[0]
def visualize_training(self):
"""可视化训练过程"""
plt.figure(figsize=(10, 6))
plt.plot(self.train_losses)
plt.title('Training Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.grid(True)
plt.show()
# 示例:生成具有时间分布变化的专家数据
def generate_time_varying_expert_data(num_samples=1000, state_dim=2, time_period=1.0):
"""
生成随时间变化的数据分布
"""
times = np.linspace(0, time_period, num_samples)
states = []
actions = []
for t in times:
# 状态分布随时间变化
mean = np.array([np.sin(2 * np.pi * t), np.cos(2 * np.pi * t)])
cov = np.diag([0.1 + 0.1 * np.abs(np.sin(np.pi * t)),
0.1 + 0.1 * np.abs(np.cos(np.pi * t))])
state = np.random.multivariate_normal(mean, cov)
# 动作是状态的函数,也随时间变化
action = 2.0 * state * (1.0 + 0.5 * np.sin(2 * np.pi * t))
states.append(state)
actions.append(action)
return np.array(states), np.array(actions), times
# 测试算法
def test_time_aware_il():
# 生成专家数据
state_dim = 2
action_dim = 2
expert_states, expert_actions, expert_times = generate_time_varying_expert_data(
num_samples=2000, state_dim=state_dim, time_period=1.0
)
# 创建并训练模型
model = TimeAwareImitationLearning(state_dim, action_dim)
model.train(expert_states, expert_actions, expert_times, epochs=500)
# 可视化训练过程
model.visualize_training()
# 测试不同时间点的策略
test_times = np.linspace(0, 1, 5)
test_states = np.random.randn(len(test_times), state_dim)
plt.figure(figsize=(12, 8))
for i, t in enumerate(test_times):
plt.subplot(2, 3, i+1)
# 真实专家行为
expert_mask = (expert_times >= t - 0.1) & (expert_times <= t + 0.1)
plt.scatter(expert_states[expert_mask, 0], expert_states[expert_mask, 1],
c='blue', alpha=0.5, label='Expert')
# 模型预测行为
pred_actions = np.array([model.predict(s, t) for s in expert_states[expert_mask]])
plt.scatter(pred_actions[:, 0], pred_actions[:, 1],
c='red', alpha=0.5, label='Policy')
plt.title(f'Time = {t:.2f}')
plt.xlabel('State 1')
plt.ylabel('State 2')
plt.legend()
plt.tight_layout()
plt.show()
if __name__ == "__main__":
test_time_aware_il()

被折叠的 条评论
为什么被折叠?



