1、残差网络(Residual Networks (ResNets))
非常非常深的神经网络是很难训练的,因为存在梯度消失和梯度爆炸问题。这节课我们学习跳跃连接(Skip connection),它可以从某一层网络层获取激活,然后迅速反馈给另外一层,甚至是神经网络的更深层。我们可以利用跳跃连接构建能够训练深度网络的ResNets,有时深度能够超过100层,让我们开始吧。
ResNets是由残差块(Residual block)构建的,首先我解释一下什么是残差块。
这是一个两层神经网络,在l层进行激活,得到a[l+1],再次进行激活,两层之后得到a[l+2]。计算过程是从a[l]开始,首先进行线性激活,根据这个公式:z=wx+b,通过算出z,即x(图中a[l])乘以权重矩阵w,再加上偏差因子b。然后通过ReLU非线性激活函数得到a,计算得出a[l+1]。接着再次进行线性激活,依据等式z = wx+b,最后根据这个等式再次进行ReLu非线性激活,即,这里的是指ReLU非线性函数,得到的结果就是a[l+2]。换句话说,信息流从到需要经过以上所有步骤,即这组网络层的主路径。
在残差网络中有一点变化,我们将直接向后,拷贝到神经网络的深层,在ReLU非线性激活函数前加上,这是一条捷径。a[l]的信息直接到达神经网络的深层,不再沿着主路径传递,这就意味着最后这个等式(a[l+1]=g(wa[l]+b))去掉了,取而代之的是另一个ReLU非线性函数,仍然对a[l+1]进行g函数处理,但这次要加上a[l],即:a[l+2]=g(wa[l+1]+b+a[l]),也就是加上的这个产生了一个残差块。
在上面这个图中,我们也可以画一条捷径,直达第二层。实际上这条捷径是在进行ReLU非线性激活函数之前加上的,而这里的每一个节点都执行了线性函数和ReLU激活函数。所以插入的时机是在线性激活之后,ReLU激活之前。除了捷径,你还会听到另一个术语 “跳跃连接”,就是指跳过一层或者好几层,从而将信息传递到神经网络的更深层。
ResNet的发明者是何凯明(Kaiming He)、张翔宇(Xiangyu Zhang)、任少卿(Shaoqing Ren)和孙剑(Jian Sun),他们发现使用残差块能够训练更深的神经网络。所以构建一个ResNet网络就是通过将很多这样的残差块堆积在一起,形成一个很深神经网络,我们来看看这个网络。
这并不是一个残差网络,而是一个普通网络(Plain network),这个术语来自ResNet论文。
把它变成ResNet的方法是加上所有跳跃连接,正如前一张幻灯片中看到的,每两层增加一个捷径,构成一个残差块。如图所示,5个残差块连接在一起构成一个残差网络。
如果我们使用标准优化算法训练一个普通网络,比如说梯度下降法,或者其它热门的优化算法。如果没有残差,没有这些捷径或者跳跃连接,凭经验你会发现随着网络深度的加深,训练错误会先减少,然后增多。而理论上,随着网络深度的加深,应该训练得越来越好才对。也就是说,理论上网络深度越深越好。但实际上,如果没有残差网络,对于一个普通网络来说,深度越深意味着用优化算法越难训练。实际上,随着网络深度的加深,训练错误会越来越多。
但有了ResNets就不一样了,即使网络再深,训练的表现却不错,比如说训练误差减少,就算是训练深达100层的网络也不例外。有人甚至在1000多层的神经网络中做过实验,尽管目前我还没有看到太多实际应用。但是对x的激活,或者这些中间的激活能够到达网络的更深层。这种方式确实有助于解决梯度消失和梯度爆炸问题,让我们在训练更深网络的同时,又能保证良好的性能。也许从另外一个角度来看,随着网络越来深,网络连接会变得臃肿,但是ResNet确实在训练深度网络方面非常有效。
2、残差网络为什么有用?(Why ResNets work?)
为什么ResNets能有如此好的表现,我们来看个例子,它解释了其中的原因,至少可以说明,如何构建更深层次的ResNets网络的同时还不降低它们在训练集上的效率。希望你已经通过第三门课了解到,通常来讲,网络在训练集上表现好,才能在Hold-Out交叉验证集或dev集和测试集上有好的表现,所以至少在训练集上训练好ResNets是第一步。
先来看个例子,上节课我们了解到,一个网络深度越深,它在训练集上训练的效率就会有所减弱,这也是有时候我们不希望加深网络的原因。而事实并非如此,至少在训练ResNets网络时,并非完全