http://acm.hdu.edu.cn/showproblem.php?pid=3609
没什么多说的,直接上公式:
然后上代码:
// Header.
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <set>
#include <map>
using namespace std;
// Macro
typedef long long LL;
#define TIME cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << "s." << endl;
#define IN freopen("/Users/apple/input.txt", "r", stdin);
#define OUT freopen("/Users/apple/out.txt", "w", stdout);
#define mem(a, n) memset(a, n, sizeof(a))
#define rep(i, n) for(int i = 0; i < (n); i ++)
#define REP(i, t, n) for(int i = (t); i < (n); i ++)
#define FOR(i, t, n) for(int i = (t); i <= (n); i ++)
#define ALL(v) v.begin(), v.end()
#define Min(a, b) a = min(a, b)
#define Max(a, b) a = max(a, b)
#define put(a) printf("%d\n", a)
#define ss(a) scanf("%s", a)
#define si(a) scanf("%d", &a)
#define sii(a, b) scanf("%d%d", &a, &b)
#define siii(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define VI vector<int>
#define pb push_back
const int inf = 0x3f3f3f3f, N = 2e2 + 5, MOD = 1e8;
// Macro end
int T, cas = 0;
LL a;
int k, Phi[N];
// Imp
int euler_phi(int n) {
int ret = n, m = (int)sqrt(n + 0.5);
FOR(i, 2, m) if(n % i == 0) {
ret = ret / i * (i - 1);
while(n % i == 0) n /= i;
} if(n > 1) ret = ret / n * (n - 1);
return ret;
}
void phi_table(int n, int * phi) {
mem(phi, 0);
phi[1] = 1;
FOR(i, 2, n) {
if(!phi[i]) {
for(int j = i; j <= n; j += i) {
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
}
}
}
LL Pow(LL a, LL t, int m) {
if(t == 0) return 1;
LL x = Pow(a, t / 2, m);
LL ans = x * x % m;
if(t & 1) ans = ans * a % m;
return ans;
}
LL cal(LL a, LL t, int m) {
LL ret = 1;
rep(i, t) {
ret *= a;
if(ret >= m) return ret;
}
return ret;
}
LL Up(LL a, int k, int num) { //题意中的函数
if(Phi[num] == 1) return 1;
if(k == 1) return a % Phi[num];
LL t = Up(a, k - 1, num + 1);
LL x = cal(a, t, Phi[num]); //通过计算看是否需要降幂
if(x >= Phi[num]) //降幂
return Pow(a % Phi[num], t, Phi[num]) + Phi[num];
return x;
}
// 预处理所有欧拉值
void init() {
Phi[0] = MOD;
REP(i, 1, N) Phi[i] = euler_phi(Phi[i-1]);
}
int main(){
#ifdef LOCAL
IN // OUT
#endif
init();
while(scanf("%I64d%d", &a, &k) != EOF) {
cout << Up(a, k, 0) % Phi[0] << endl;
}
return 0;
}