1、序言
样本介绍
-
现有一样本,含3个时序【y、y1、y2】,其中【y】受【y1、y2】影响
目标
-
对【时序y】进行预测
import numpy as np, matplotlib.pyplot as mp
x_len = 1075
x = np.linspace(0, np.pi * 10.75, x_len, endpoint=False)
y = np.cos(x) + np.sin(x * 5) * .2
y1 = np.sin(x) + 2.6
y2 = np.cos(x * 5) * .2 + 1.4
mp.plot(x, y1, 'y', label='y1')
mp.plot(x, y2, label='y2')
mp.plot(x, y, 'g', label='y', linewidth=2)
mp.legend()
mp.show()

2、仅用时序y进行预测
import numpy as np, matplotlib.pyplot as mp
from keras.models import Sequential
from keras.layers import Dense, LSTM
"""创建样本"""
x_len = 1075
x = np.linspace(0, np.pi * 10.75, x_len, endpoint=False)
y = np.cos(x) + np.sin(x * 5) * .2
y = (y - min(y