Problem:
Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.
For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 + 3 + 4).
Note: You may assume that n is not less than 2 and not larger than 58.
Solution:
仍然是找规律的题,列出多个数字的分解可以发现只要使3尽可能的多并且剩下的值不为1时分解后的积就最大。这里第一种用DP实现,复杂度为O(n),第二种直接计算,复杂度为O(1)。DP复杂度的系数较小,在n比较小时即题目限定范围,两者效率差别不大。
// DP O(n)
int integerBreak(int n) {
switch(n){
case 2:
return 1;
case 3:
return 2;
case 4:
return 3;
};
int *num = new int[n+1];
num[2] = 2;
num[3] = 3;
num[4] = 4;
for (int i = 5; i <= n; ++i){
num[i] = num[i-3]*3;
}
return num[n];
}
// O(1)
int integerBreak(int n) {
if (n == 2){
return 1;
}
else if(n == 3){
return 2;
}
else if(n == 4){
return 4;
}
else if (n%3 == 0){
return pow(3.0, n/3);
}
else if (n%3 == 1){
return pow(3.0, n/3-1)*4;
}
else{
return pow(3.0, n/3)*2;
}
}
探讨如何将正整数拆分为至少两个正整数之和,以最大化这些整数的乘积,并提供两种解决方案:一种使用动态规划实现,另一种通过直接计算得出结果。
965

被折叠的 条评论
为什么被折叠?



