import os
import numpy as np
import cv2
ims_path = r'E:\Datasets/' # Path to Images
#ims_list = os.listdir(ims_path)
g = os.walk(ims_path)
ims_list = ['%s\\%s' % (i[0], j) for i in g if i[0].endswith('JPEGImages') for j in i[-1] if j.endswith('jpg')]
print(len(ims_list))
R_means = []
G_means = []
B_means = []
for im_list in ims_list:
im = cv2.imread(im_list)
#extrect value of diffient channel
im_R = im[:,:,0]
im_G = im[:,:,1]
im_B = im[:,:,2]
#count mean for every channel
im_R_mean = np.mean(im_R)
im_G_mean = np.mean(im_G)
im_B_mean = np.mean(im_B)
#save single mean value to a set of means
R_means.append(im_R_mean)
G_means.append(im_G_mean)
B_means.append(im_B_mean)
print('图片:{} 的 RGB平均值为 \n[{},{},{}]'.format(im_list,im_R_mean,im_G_mean,im_B_mean) )
#three sets into a large set
a = [R_means,G_means,B_means]
mean = [0,0,0]
#count the sum of different channel means
mean[0] = np.mean(a[0])
mean[1] = np.mean(a[1])
mean[2] = np.mean(a[2])
print('数据集的BGR平均值为\n[{},{},{}]'.format( mean[0]/255, mean[1]/255, mean[2]/255) )
计算数据集中图像均值
最新推荐文章于 2024-06-09 10:44:07 发布