线段树(区间树)
对于给定区间
更新:更新区间中一个元素或者一个区间的值
查询:查询一个区间[i,j]的最大值,最小值或者区间数字和
线段树是平衡二叉树(对于整棵树来说,最大深度和最小深度相差不超过一)(堆也是平衡二叉树)
“
如果区间有n个元素,数组表示需要有多少节点?
0层:1
1层:2
2层:4
3层:8
…
h-1层:2^(h-1)
”
对满二叉树:
h层,一共有2h-1个节点(大约是2h)
最后一层(h-1层),有2^(h-1)个节点
最后一层的节点数大致等于前面所有层节点之和
需要大概4n的空间(可能会浪费一些空间)
代码实现
接口:
public interface Merger<E>{
E merger(E a, E b);
}
public class SegmentTree<E> {
private E[] tree;
private E[] data;
private Merger<E> merger;
public SegmentTree (E[] arr, Merger<E> merger){
this.merger = merger;
data = (E[])new Object[arr.length];
for (int i = 0; i < arr.length; i ++){
data[i] = arr[i];
}
tree = (E[])new Object[4 * arr.length];
buildSegmentTree(0, 0, data.length - 1);
}
//在treeIndex的位置创建表示区间[l...r]
private void buildSegmentTree(int treeIndex, int l, int r){
if (l == r){
tree[treeIndex] = data[l];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
int mid = l + (r - l) / 2;
buildSegmentTree(leftTreeIndex, l, mid);
buildSegmentTree(rightTreeIndex, mid + 1, r);
tree[treeIndex] = merger.merger(tree[leftTreeIndex], tree[rightTreeIndex]);
}
public int getSize(){
return data.length;
}
public E get (int index){
if (index < 0 || index >= data.length){
throw new IllegalArgumentException("Index is illegal.");
}
return data[index];
}
//返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
private int leftChild(int index){
return 2 * index + 1;
}
//返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
private int rightChild(int index){
return 2 * index + 2;
}
//返回区间[queryL, queryR]的值
public E query(int queryL, int queryR){
if (queryL < 0 || queryL >=data.length || queryR < 0 || queryR >= data.length || queryL > queryR)
throw new IllegalArgumentException("Index is length.");
return query(0, 0, data.length - 1, queryL, queryR);
}
//在以treeID为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值
private E query (int treeIndex, int l, int r, int queryL, int queryR){
if (l == queryL && r == queryR)
return tree[treeIndex];
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if (queryL >= mid + 1)
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
else if (queryR <= mid)
return query(leftTreeIndex, l, mid, queryL, queryR);
E leftResult = query(leftTreeIndex, l, mid, queryL, mid);
E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1 ,queryR);
return merger.merger(leftResult, rightResult);
}
@Override
public String toString(){
StringBuilder res = new StringBuilder();
res.append('[');
for (int i = 0; i < tree.length; i ++){
if (tree[i] != null){
res.append(tree[i]);
}else{
res.append("null");
}
if(i == tree.length - 1){
res.append(']');
}
}
return res.toString();
}
//将index位置的值,更新为e
public void set(int index, E e){
if (index < 0 || index >= data.length)
throw new IllegalArgumentException("Index is illegal");
data[index] = e;
set(0, 0, data.length - 1, index, e);
}
// 在以treeIndex为根的线段树中更新index的值为e
private void set(int treeIndex, int l, int r, int index, E e){
if(l == r){
tree[index] = e;
return;
}
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
if (index >= mid + 1)
set(rightTreeIndex, mid + 1, r, index, e);
else
set(leftTreeIndex, l, mid, index, e);
tree[treeIndex] = merger.merger(tree[leftTreeIndex], tree[rightTreeIndex]);
}
@Override
public String toString(){
StringBuilder res = new StringBuilder();
res.add('[');
for (int i = 0; i < tree.length; i ++){
if (tree[i] != null){
res.append(tree[i]);
}else{
res.append("null");
}
if(i != tree.length - 1){
res.append(']');
}
}
}
}
Main函数
public class Main{
public static void main(String[] args) {
Integer[] nums = {-2, 0, 3, -5, 2, -1};
SegmentTree<Integer> segTree = new SegmentTree<>(nums, (a, b) -> a + b);
System.out.println(segTree);
// System.out.println(segTree.query(0,2));
}
}
本文详细介绍线段树(区间树)的概念、应用场景及其实现方法。包括如何构建线段树、查询区间内元素的最大值、最小值或总和,以及如何进行区间更新。同时提供了完整的Java代码实现。
1393

被折叠的 条评论
为什么被折叠?



