实现一个函数,可以左旋字符串中的k个字符。

本文介绍了一个使用C语言实现的字符串左旋函数。通过一个简单的示例程序展示了如何将字符串中的前k个字符旋转到字符串末尾的过程。该函数采用逐位移动的方式完成字符串的左旋操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实现一个函数,可以左旋字符串中的k个字符。
ABCD左旋一个字符得到BCDA
ABCD左旋两个字符得到CDAB 
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<Windows.h>

void left_move(char *p, int n)
{
	int i = 0;
	for (i = 0; i < n; i++)
	{
		char tmp = *p;  //第一位存起来
		int j = 0;
		while (*(p + 1 + j))
		{
			*(p + j) = *(p + j + 1);//把后一位赋给前一位
			j++;
		}
		*(p + j) = tmp;//将前面的赋给后面
	}
}
int main()
{
	char arr[] = "ABCD";
	int num = 0;
	printf("输入左转次数:");
	scanf("%d", &num);
	left_move(arr, num);
	printf("左转后字符串:");
	printf("%s\n", arr);
	system("pause");
	return 0;
}

内容概要:该论文聚焦于T2WI核磁共振图像超分辨率问题,提出了一种利用T1WI模态作为辅助信息的跨模态解决方案。其主要贡献包括:提出基于高频信息约束的网络框架,通过主干特征提取分支和高频结构先验建模分支结合Transformer模块和注意力机制有效重建高频细节;设计渐进式特征匹配融合框架,采用多阶段相似特征匹配算法提高匹配鲁棒性;引入模型量化技术降低推理资源需求。实验结果表明,该方法不仅提高了超分辨率性能,还保持了图像质量。 适合人群:从事医学图像处理、计算机视觉领域的研究人员和工程师,尤其是对核磁共振图像超分辨率感兴趣的学者和技术开发者。 使用场景及目标:①适用于需要提升T2WI核磁共振图像分辨率的应用场景;②目标是通过跨模态信息融合提高图像质量,解决传统单模态方法难以克服的高频细节丢失问题;③为临床诊断提供更高质量的影像资料,帮助医生更准确地识别病灶。 其他说明:论文不仅提供了详细的网络架构设计与实现代码,还深入探讨了跨模态噪声的本质、高频信息约束的实现方式以及渐进式特征匹配的具体过程。此外,作者还对模型进行了量化处理,使得该方法可以在资源受限环境下高效运行。阅读时应重点关注论文中提到的技术创新点及其背后的原理,理解如何通过跨模态信息融合提升图像重建效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值