Codeforces Round #FF (Div. 2)446A - DZY Loves Sequences(最长上升子序列变形)

本文介绍了一种算法,用于解决寻找最长子序列的问题,该子序列可以通过改变一个数变为严格递增。文章提供了一个AC代码示例,展示了如何通过预处理前后缀的最大递增长度来高效地解决这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. DZY Loves Sequences
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

DZY has a sequence a, consisting of n integers.

We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.

Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.

You only need to output the length of the subsegment you find.

Input

The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

Output

In a single line print the answer to the problem — the maximum length of the required subsegment.

Sample test(s)
input
6
7 2 3 1 5 6
output
5
Note

You can choose subsegment a2, a3, a4, a5, a6 and change its 3rd element (that is a4) to 4.

AC代码:

#include <stdio.h>
#include <string.h>
#define Max 100100
#define ll long long

#define max(a,b) a>b?a:b;
ll a[Max],l[Max],r[Max];

int main(){
	ll n,p,i,j,ans;
	while(~scanf("%lld",&n)){
		memset(a,0,sizeof(a));
        memset(l,0,sizeof(l));
        memset(r,0,sizeof(r));
		ans=1;
		for(i=0;i<n;i++)
			scanf("%lld",&a[i]);
		if(n==1)
			printf("1\n");
		else if(n==2)
			printf("2\n");
		else{
			l[0]=1;
			for(i=1;i<n;i++){
				if(a[i]>a[i-1])
					l[i]=l[i-1]+1;
				else
					l[i]=1;
			}
			r[n-1]=1;
			for(i=n-2;i>=1;i--){
				if(a[i+1]>a[i])
					r[i]=r[i+1]+1;
				else
					r[i]=1;
			}
			for(i=n-2;i>=1;i--){
				if(a[i-1]+1<a[i+1])
					ans=max(ans,l[i-1]+1+r[i+1]);
			}
			for(i=1;i<n;i++){
				if(a[i]<=a[i-1])
					ans=max(ans,l[i-1]+1);
			}
			for(i=0;i<n-1;i++){
				if(a[i]>=a[i+1])
					ans=max(ans,r[i+1]+1);
			}
			printf("%lld\n",ans);
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值