- 使用场景:适合查找比较小且连续的情况
面试题:
Leet 387: 字符串中的第一个唯一字符
描述: 给定一个字符串 s ,找到 它的第一个不重复的字符,并返回它的索引 。如果不存在,则返回 -1 。

解题思路:
-
定义一个数组
arr长度为 26 -
遍历字符串, 每次遍历得到的字符
ch, 让arr[ch-'a']++; -
再次遍历字符串,每次遍历得到的字符
ch,判断arr[ch-'a'] == 1,
如果为真,即返回当前的下标.
如果遍历结束,没有为真的情况,返回-1
代码实现:
class Solution {
public int firstUniqChar(String s) {
int[] arr = new int[26];
for(Character ch : s.toCharArray()){
arr[ch-‘a’] ++;
}
for (int i = 0; i < s.length(); i++) {
if(arr[s.charAt(i)-‘a’]==1){
return i;
}
}
return -1;
}
}
设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址
假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址
平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况
折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。
折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况
选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。
通常应用于关键字长度不等时采用此法
设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。例如:

假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现 冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。
数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突
=========================================================================================
散列表的载荷因子定义为: α = 填入表中的元素个数 / 散列表的长度
α是散列表装满长度的标志因子.由于表长是定值.α与"填入表中的元素个数"成正比,所以,α越大,表明填入表中的元素越多,产生冲突的可能性就越大;反之,α越小,标明填入表中的元素越少,产生冲突的可能性就越小.实际上,散列表的平均查找长度是负载因子α的函数,只是不同处理冲突的方法有不同的函数.
对于开放定址法,负载因子是特别重要的因素,应严格限制在0.7~0.8以下,超过0.8,查表时的CPU缓存不命中(cache missing)按照指数曲线上升.因此,一些采用开放定址法的hash库,如Java的系统库限制了荷载因子为0.75,超过此值将resize散列表.
负载因子和冲突率的关系粗略演示

**所以当冲突率达到一个无法忍受的程度时,我们需要通过降低负载因子来变相的降低冲突率。
已知哈希表中已有的关键字个数是不可变的,那我们能调整的就只有哈希表中的数组的大小。**
================================================================================
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。
如何寻找空的位置?
比如上面的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,下标为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。
线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
-
插入
-
通过哈希函数获取待插入元素在哈希表中的位置
-
如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素
-
采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

缺点: 产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找
因此二次探测为了避免该问题,找下一个空位置的方法为: Hi= ( H0+i2 ) % m
其中:i = 1,2,3…, H0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。

研究表明: 当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容
因此:闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷
==========================================================================================
开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。
public class HashBuck {
static class Node {
public int key;
public int val;
public Node next;
public Node(int key,int val) {
this.key = key;
this.val = val;
}
}
public Node[] array;
public int usedSize;
public static final double DEFAULT_LOAD_FACTOR = 0.75;
public HashBuck() {
this.array = new Node[10];
}
public void put(int key,int val){
// 1. 找到key的位置
int index = key % array.length;
// 2. 遍历这个下标的链表,看是否有相同key,有相同的key需要更新val
Node cur = array[index];
while (cur != null){
if(cur.key == key){
cur.val = val;
return;
}
cur = cur.next;
}
//3.没有这个key这个元素
//头插法
/*Node node = new Node(key,val);
node.next = array[index];
array[index] = node;
this.usedSize++;*/
//尾插法
Node node = new Node(key, val);
if(array[index] == null){
array[index] = node;
}else {
Node tmp = array[index];
while(tmp.next != null){
tmp = tmp.next;
}
tmp.next = node;
}
this.usedSize++;
//4.插入元素成功之后,检查当前散列表的负载因子
if(loadFactor() > DEFAULT_LOAD_FACTOR){
resize();
}
}
private void resize() {
Node[] newArray = new Node[array.length*2];
for (int i = 0; i < array.length; i++) {
Node cur = array[i];
while (cur != null){
int index = cur.key % newArray.length;//获取新的下标
// cur节点以头插或尾插形式 插入到新的数组对应下标的链表当中
Node curNext = cur.next;
cur.next = newArray[index];
newArray[index] = cur;
cur = curNext;
}
}
array = newArray;
}
private double loadFactor() {
return 1.0 * usedSize / array.length;
}
/**
-
根据key获取val的值
-
@param key
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。


既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)
最后
给大家送一个小福利

附高清脑图,高清知识点讲解教程,以及一些面试真题及答案解析。送给需要的提升技术、准备面试跳槽、自身职业规划迷茫的朋友们。

《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》,点击传送门即可获取!
觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)**
最后
给大家送一个小福利
[外链图片转存中…(img-4h6QbU57-1712448148930)]
附高清脑图,高清知识点讲解教程,以及一些面试真题及答案解析。送给需要的提升技术、准备面试跳槽、自身职业规划迷茫的朋友们。
[外链图片转存中…(img-f5Zmv3xw-1712448148931)]
《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》,点击传送门即可获取!
1638

被折叠的 条评论
为什么被折叠?



