模拟退火算法优点
1、以一定的概率接受恶化解
模拟退火算法(SA)在搜索策略上与传统的随机搜索方法不同,它不仅引入了适当的随机因素,而且还引入了物理系统退火过程的自然机理。这种自然机理的引入使模拟退火算法在迭代过程中不仅接受使目标函数变“好”的试探点,而且还能以一定的概率接受使目标函数值变“差”的试探点,迭代中出现的状态是随机产生的,并不强求后一状态一定优于前一状态,接受概率随着温度的下降而逐渐增大。
2、引进算法控制参数T
将优化过程分成各个阶段,并决定各个阶段下随机状态的取舍标准,接受函数由Metropolis算法给出一个简单的数学模型。
模拟退火算法的两个重要步骤是:一是在每个控制参数T下,由前迭代点出发,产生邻近的随机状态,由T确定的接受准则决定此新状态的取舍;二是缓慢降低控制参数T,提高接收准则,直至T->0,状态链稳定于优化问题的最优状态,提高模拟退火算法全局最优解的可靠性。
3、使用对象函数值进行搜索
传统搜索算法不仅需要利用目标函数值,而且往往需要目标函数的导数值等其它一些辅助信息,能确定搜索方向,当这些信息不存在时,算法就失效了。而模拟退火算法仅使用由目标函数变换来的适应度函数值,就可确定进一步的搜索方向和搜索范围,无需其它的辅助信息。
4、搜索复杂区域
<