神经网络Python练习

该博客介绍了如何使用TensorFlow构建全连接神经网络(FNN),应用Adagrad优化器和dropout技术来防止过拟合。作者在实践中遇到过拟合问题,并分享了尝试解决的方法,但效果不理想,需要进一步优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用TensorFlow创建FNN神经网络模型,梯度下降采用Adagrad,使用dropout防止过拟合,尝试保存模型再调用的操作。

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import metrics

#定义读取数据的函数
def load_data(train_path=""):
    train=pd.read_csv(train_path,names=["feature1",	"feature2"	,"feature3"	,"feature4"	,"feature5",
                                        "feature6"	,"feature7"	,"feature8",	"feature9"	,"feature10",
                                        "feature11"	,"feature12",	"feature13"	,"feature14",	"feature15"	,
                                        "feature16"	,"feature17"	,"feature18",	"feature19",	"feature20",
                                        "feature21"	,"feature22",	"feature23"	,"feature24"	,"feature25",
                                        "feature26",	"feature27",	"feature28"	,"feature29",	"feature30",
                                        "feature31"	,"feature32",	"feature33",	"feature34"	,"feature35",
                       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值