Given a sequence of positive integers and another positive integer p. The sequence is said to be a perfect sequence if M≤m×p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (≤105) is the number of integers in the sequence, and p (≤109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
思路: 首先将数字序列按照非递减的顺序排序,从第一个数开始计算完美数列的长度,最后取最大值。在计算完美数列的时候,要用二分查找的策略,找到第一个大于x*p的位置,将时间复杂度由n变为logn。
代码一:手写二分查找的函数
#include <iostream>
#include<algorithm>
using namespace std;
const int maxn = 100010;
int a[maxn],n,p;
int BinarySearch(int i,long long x)
{
if (a[n - 1] <= x) return n;
int l = i + 1, r = n - 1, mid;
while (l<r)
{
mid = (l + r) / 2;
if (a[mid] <= x) l = mid + 1;
else {
r = mid;
}
}
return l;
}
int main()
{
scanf("%d%d", &n,&p);
for (int i = 0; i < n; i++)
{
scanf("%d", &a[i]);
}
sort(a, a + n);
int ans = 1;
for (int i = 0; i < n; i++)
{
int j = BinarySearch(i, (long long)a[i] * p);
ans = max(ans, j - i);
}
printf("%d\n", ans);
return 0;
}
代码二:利用STL模板库的upper_bound函数
#include <iostream>
#include<algorithm>
using namespace std;
const int maxn = 100010;
int a[maxn],n,p;
int main()
{
scanf("%d%d", &n, &p);
for (int i = 0; i < n; i++)
{
scanf("%d", &a[i]);
}
sort(a, a + n);
int ans = 1;
for (int i = 0; i < n; i++)
{
int j= upper_bound(a + i+1, a + n,(long long) a[i] * p)-a;
ans = max(ans, j - i);
}
printf("%d\n", ans);
return 0;
}