参考了网上的一些大神的代码,自己整理了一下程序,在 Pytorch 0.4.0 版本上可以正确运行,现在分享给大家。主要使用torchvision自带的MNIST数据集,进行一个手写字体识别,主要是做了分模块整理和在0.4.0版本的修改,便于理解。
运行环境:Pytorch 0.4.0 CPU版, Python 3.6, Windows7
程序实现:
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.utils.data as Data
import torchvision
torch.manual_seed(1)
EPOCH = 1
BATCH_SIZE = 50
class CNN(nn.Module): # 网络结构
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2), # (16,28,28)
nn.ReLU(), nn.MaxPool2d(kernel_size=2))
self.conv2 = nn.Sequential(nn.Conv2d(16, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2))
self.out = nn.Linear(32*7*7, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # 将(batch,32,7,7)展平为(batch,32*7*7)
output = self.out(x)
return output
def getData(): # 获取数据
training_data = torchvision.datasets.MNIST(
root='./mnist/', # dataset存储路径
train=True, # True表示是train训练集,False表示test测试集
transform=torchvision.transforms.ToTensor(), # 将原数据规范化到(0,1)区间
download=True) # 获取训练集dataset
train_loader = Data.DataLoader(dataset=training_data, batch_size=BATCH_SIZE, shuffle=True) # dataset格式可直接可置于DataLoader
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) # 获取测试集 dataset
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1)).type(torch.FloatTensor)[:2000] / 255 # 取前2000个测试集样本
test_y = test_data.test_labels[:2000]
return train_loader, test_x, test_y
def trainModel(): # 训练模型
train_loader, test_x, test_y = getData()
model = CNN()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loss_function = nn.CrossEntropyLoss()
for epoch in range(EPOCH):
for step, (x, y) in enumerate(train_loader):
output = model(x)
loss = loss_function(output, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 100 == 0:
test_output = model(test_x)
pred_y = torch.max(test_output, 1)[1].data.squeeze()
accuracy = float(sum(pred_y==test_y)) / test_y.size(0)
print('Epoch:', epoch, '|Step:', step, '|train loss:%.4f' % loss.item(), '|test accuracy:%.4f' % accuracy)
return model
if __name__ == '__main__':
model = trainModel()
# ----------测试--------------
_, tx, ty = getData() # 获取数据
test_output = model(tx[:10]) # 获取预测结果
py = torch.max(test_output, 1)[1].data.numpy().squeeze()
print('真实数据:', ty[:10].numpy())
print('预测结果:', py)
欢迎指正哦