编者按:苏轼在《题西林壁》中曾写道:“横看成岭侧成峰,远近高低各不同。”这两句诗阐释了视角的变化对于视觉任务的影响。
而在人脸识别领域,由于真实场景的复杂多变,受人体姿态和取景角度的影响,采集到的人脸图像,时常会存在平面内旋转角度不确定等问题,这为人脸检测以及基于人脸的视觉任务带来了极大的挑战。
本文中,将为大家介绍中科院计算所VIPL组的CVPR2018新作:如何利用级联矫正网络,来实现实时、旋转自适应的人脸检测。
大讲堂特别提供相关论文及demo的下载链接。
另,深度学习大讲堂即将推出Valse2018系列报告,敬请关注!

本文将介绍我们的一篇实时旋转不变人脸检测的工作。
本论文下载链接:
https://arxiv.org/pdf/1804.06039.pdf.
算法的demo链接:
https://github.com/Jack-CV/PCN.

在体操、街舞、家庭合影等复杂的应用场景,由于人体姿态和取景角度的变化,人脸不总是竖直的,有可能有各种各样的平面内旋转角度。旋转不变人脸检测算法目标是精确的检测这种旋转的人脸。多样的平面内旋转角度,使得人脸的表观变化非常大,为旋转不变人脸检测带来了极大的挑战性。

有很多已有的工作尝试解决旋转不变人脸检测。最简单直接的方法就是基于数据増广的方法,在训练阶段将人脸旋转到任意角度。这样做的优点是测试阶段没有额外的时间开销;缺点是旋转人脸的表观变化非常大,需要使用一个计算量较大的网络才能保证检测的精度,这在一些对实时性要求高的应用中是不实用的。

另外一种策略就是分治。可以训练一个竖直人脸检测器,在测试阶段,将待检测图像旋转多遍进行检测,这样也可以实现任意旋转角度人脸的检测。竖直人脸检测器的计算量是相对较小的,但是检测多次也会使得时间开销成倍增长,而且带来更多的误检测。