Given an unsorted array of integers, find the length of the longest consecutive elements sequence.
For example,
Given [100, 4, 200, 1, 3, 2]
,
The longest consecutive elements sequence is [1, 2, 3, 4]
. Return its length:
4
.
Your algorithm should run in O(n) complexity.
最简单的想法就是将所有数排序,然后从有序数组中找出长度最长的连续序列复杂度为O(nlogn)。然而本题要求复杂度为O(n),我们便有如下解法,首先我们保存我们已经合并的连续的区间,然后加入一个数的时候,我们利用这个数对已知的区间进行更新,更新操作的复杂度要求为O(1),由于我们在更新的时候需要查找区间的端点,因此我们便可以用hash存储,然后进行查找,这样查找的复杂度便成为O(1),然后算法的总体复杂度便成为了O(n).由于要用到hash_map,我之前从来没有用过hash_map,貌似C++11出现了新的容器可以实现O(1)的查找,但是我还知道那是什么玩意儿啊。。。。。。,所以在此处用了map,set来代替的,实现了该算法,但是明确说一下该算法的复杂度为O(nlogn),换成hash_map就成为O(n)了。
class Solution {
public:
int longestConsecutive(vector<int>& nums) {
// 区间右端点,区间左端点
int ans = 1;
map<int, int> myMap;
set<int> mySet;
int size = nums.size();
for(int i = 0; i < size; ++i) {
if(mySet.find(nums[i]) != mySet.end()) {
continue;
}
mySet.insert(nums[i]);
if(myMap.find(nums[i]) == myMap.end()) {
myMap[nums[i]] = nums[i];
}
if(myMap.find(nums[i]-1) != myMap.end()) {
int x = myMap[nums[i]-1];
if(x >= nums[i]) {
if(x > nums[i]) {
myMap.erase(nums[i]);
}
continue;
}
myMap[x] = nums[i];
myMap[nums[i]] = x;
if(x != nums[i] - 1) {
myMap.erase(nums[i]-1);
}
ans = max(ans, nums[i] - x + 1);
}
if(myMap.find(nums[i]+1) != myMap.end()) {
int x = myMap[nums[i]+1];
if(x <= nums[i]) {
if(x < nums[i]) {
myMap.erase(nums[i]);
}
continue;
} else {
int l = myMap[nums[i]], r = myMap[nums[i]+1];
if(l > nums[i]) {
l = nums[i];
}
myMap[l] = r;
myMap[r] = l;
if(l != nums[i]) myMap.erase(nums[i]);
if(r != nums[i] + 1) myMap.erase(nums[i]+1);
ans = max(ans, r - l + 1);
}
}
}
return ans;
}
};