SSD单发多框检测—基础结构

import torch
import torch.nn as nn
import torchvision.models as models

class VGGBase(nn.Module):
    def __init__(self):
        super(VGGBase, self).__init__()
        vgg = models.vgg16(pretrained=True)
        self.features = nn.Sequential(*list(vgg.features.children())[:-2])  
        # 移除最后两层池化层
    def forward(self, x):
        return self.features(x)
class ExtraLayers(nn.Module):
    def __init__(self):
        super(ExtraLayers, self).__init__()
        self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
        self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
        self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1)
        self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
        self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1)
        self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)

    def forward(self, x):
        x = nn.ReLU(inplace=True)(self.conv6(x))
        x = nn.ReLU(inplace=True)(self.conv7(x))
        x = nn.ReLU(inplace=True)(self.conv8_1(x))
        x = nn.ReLU(inplace=True)(self.conv8_2(x))
        x = nn.ReLU(inplace=True)(self.conv9_1(x))
        x = nn.ReLU(inplace=True)(self.conv9_2(x))
        return x
class PredictionLayers(nn.Module):
    def __init__(self, num_classes):
        super(PredictionLayers, self).__init__()
        self.num_classes = num_classes
        self.loc_layers = nn.ModuleList()
        self.conf_layers = nn.ModuleList()

        # 为每个特征图添加分类和回归层
        self.loc_layers.append(nn.Conv2d(512, 4 * 4, kernel_size=3, padding=1))
        self.conf_layers.append(nn.Conv2d(512, 4 * num_classes, kernel_size=3, padding=1))

        self.loc_layers.append(nn.Conv2d(1024, 6 * 4, kernel_size=3, padding=1))
        self.conf_layers.append(nn.Conv2d(1024, 6 * num_classes, kernel_size=3, padding=1))

        self.loc_layers.append(nn.Conv2d(512, 6 * 4, kernel_size=3, padding=1))
        self.conf_layers.append(nn.Conv2d(512, 6 * num_classes, kernel_size=3, padding=1))

        self.loc_layers.append(nn.Conv2d(256, 6 * 4, kernel_size=3, padding=1))
        self.conf_layers.append(nn.Conv2d(256, 6 * num_classes, kernel_size=3, padding=1))

    def forward(self, features):
        loc_preds = []
        conf_preds = []

        for (x, l, c) in zip(features, self.loc_layers, self.conf_layers):
            loc_preds.append(l(x).permute(0, 2, 3, 1).contiguous().view(x.size(0), -1, 4))
            conf_preds.append(c(x).permute(0, 2, 3, 1).contiguous().view(x.size(0), -1, self.num_classes))

        loc_preds = torch.cat(loc_preds, 1)
        conf_preds = torch.cat(conf_preds, 1)
        return loc_preds, conf_preds
class SSD(nn.Module):
    def __init__(self, num_classes):
        super(SSD, self).__init__()
        self.num_classes = num_classes
        self.base_net = VGGBase()
        self.extra_layers = ExtraLayers()
        self.prediction_layers = PredictionLayers(num_classes)

    def forward(self, x):
        base_features = self.base_net(x)
        extra_features = self.extra_layers(base_features)
        features = [base_features, extra_features]
        loc_preds, conf_preds = self.prediction_layers(features)
        return loc_preds, conf_preds

# 实例化模型
num_classes = 21  # 假设有20个目标类别,加1个背景类别
model = SSD(num_classes)

# 输入图像张量
images = torch.randn(8, 3, 300, 300)  # 8张300x300的图像
model.eval()

# 前向传递
with torch.no_grad():
    loc_preds, conf_preds = model(images)

print(loc_preds.shape)  # 打印形状
print(conf_preds.shape)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值