USACO2014FebruaryGold Cow Decathlon

本文介绍了一种使用状态压缩动态规划(状压DP)的方法来解决赛马问题,通过2^20的空间复杂度枚举不同马匹的使用情况以最大化奖金收益。文章详细解释了状态表示、转移过程及其实现细节。

可利用状压DP 只有2的20次方空间 枚举n匹马的使用情况
dp[k]表示当前状态下马的使用情况能达到的最大奖金值 比如10111 即使用第一 第二 第三 第五匹马完成前4个项目所能达到的奖金的最大值 故可以找到没有使用过的马 完成下一个项目 然后更新dp值

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string>
#include<string.h>
#include<vector>
#define M 1200005
using namespace std;
int n,b;
struct node{
    int p,g;
};
int dp[M];//存当前几匹马使用状态下最高获得的奖金
int s[1005][1005];
vector<node>edge[25];
int main(){
    scanf("%d %d",&n,&b);
    while(b--){
        int p,g,a;
        scanf("%d %d %d",&p,&g,&a);
        edge[p].push_back((node){g,a});
    }
    for(int i=0;i<n;i++)for(int j=1;j<=n;j++)scanf("%d",&s[i][j]);
    for(int i=0;i<(1<<n)-1;i++){
        int cnt=__builtin_popcount(i);//求出二进制位上有多少个1
        int x=i;
        for(int j=0;j<n;j++){
            if(x&(1<<j))continue;//找到没有使用的马
            int sum=dp[x]+s[j][cnt+1],ans=0;
            for(int k=0;k<edge[cnt+1].size();k++)
                if(sum>=edge[cnt+1][k].p)ans+=edge[cnt+1][k].g;
            dp[x|(1<<j)]=max(dp[x|(1<<j)],sum+ans);//更新获得的奖金
        }
    }
    printf("%d",dp[(1<<n)-1]);
    return 0;
}
基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值