(2)NioServer

package com.demo.nio;

import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;


public class NioServer {
    // 通道管理器
    private Selector selector;

    /**
     * 获得一个ServerSocket通道,并对该通道做一些初始化的工作
     * @param port 绑定的端口号
     * @throws IOException
     */
    public void initServer(int port) throws IOException {
        // 获得一个ServerSocketChannel通道
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        // 设置通道为非阻塞
        serverSocketChannel.configureBlocking(false);
        // 将该通道对应的ServerSocket绑定到port端口
        serverSocketChannel.bind(new InetSocketAddress(port));
        // 获得一个通道管理器
        this.selector = Selector.open();
        // 将通道管理器和该通道绑定,并为该通道注册SelectionKey.OP_ACCEPT事件,注册该事件后,
        // 当该事件到达时,selector.select()会返回,如果该事件没到达selector.select()会一直阻塞。
        serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
    }

    /**
     * 采用轮询的方式监听selector上是否有需要处理的事件,如果有,则进行处理
     * @throws IOException
     */
    public void listen() throws IOException {
        System.out.println("服务端启动成功!");
        // 轮询访问selector
        while (true) {
            // 当注册的事件到达时,方法返回;否则,该方法会一直阻塞
            selector.select();
            // 获得selector中选中的项的迭代器,选中的项为注册的事件
            Iterator<SelectionKey> ite = this.selector.selectedKeys().iterator();
            while (ite.hasNext()) {
                SelectionKey key = (SelectionKey) ite.next();
                // 删除已选的key,以防重复处理
                ite.remove();

                if (key.isAcceptable()) {// 客户端请求连接事件
                    ServerSocketChannel server = (ServerSocketChannel) key.channel();
                    // 获得和客户端连接的通道
                    SocketChannel channel = server.accept();
                    // 设置成非阻塞
                    channel.configureBlocking(false);

                    // 在这里可以给客户端发送信息哦
                    channel.write(ByteBuffer.wrap(new String("向客户端发送了一条信息")
                            .getBytes("utf-8")));
                    // 在和客户端连接成功之后,为了可以接收到客户端的信息,需要给通道设置读的权限。
                    channel.register(this.selector, SelectionKey.OP_READ);

                } else if (key.isReadable()) {// 获得了可读的事件
                    read(key);
                }

            }

        }
    }

    /**
     * 处理读取客户端发来的信息 的事件
     *
     * @param key
     * @throws IOException
     */
    public void read(SelectionKey key) throws IOException {
        // 服务器可读取消息:得到事件发生的Socket通道
        SocketChannel channel = (SocketChannel) key.channel();
        // 创建读取的缓冲区
        ByteBuffer buffer = ByteBuffer.allocate(512);
        channel.read(buffer);
        byte[] data = buffer.array();
        String msg = new String(data).trim();
        System.out.println("服务端收到信息:" + msg);
        ByteBuffer outBuffer = ByteBuffer.wrap(msg.getBytes("utf-8"));
        channel.write(outBuffer);// 将消息回送给客户端
    }

    /**
     * 启动服务端测试
     *
     * @throws IOException
     */
    public static void main(String[] args) throws IOException {
        NioServer server = new NioServer();
        server.initServer(8000);
        server.listen();
    }

}
资源下载链接为: https://pan.quark.cn/s/9e7ef05254f8 行列式是线性代数的核心概念,在求解线性方程组、分析矩阵特性以及几何计算中都极为关键。本教程将讲解如何用C++实现行列式的计算,重点在于如何输出分数形式的结果。 行列式定义如下:对于n阶方阵A=(a_ij),其行列式由主对角线元素的乘积,按行或列的奇偶性赋予正负号后求和得到,记作det(A)。例如,2×2矩阵的行列式为det(A)=a11×a22-a12×a21,而更高阶矩阵的行列式可通过Laplace展开或Sarrus规则递归计算。 在C++中实现行列式计算时,首先需定义矩阵类或结构体,用二维数组存储矩阵元素,并实现初始化、加法、乘法、转置等操作。为支持分数形式输出,需引入分数类,包含分子和分母两个整数,并提供与整数、浮点数的转换以及加、减、乘、除等运算。C++中可借助std::pair表示分数,或自定义结构体并重载运算符。 计算行列式的函数实现上,3×3及以下矩阵可直接按定义计算,更大矩阵可采用Laplace展开或高斯 - 约旦消元法。Laplace展开是沿某行或列展开,将矩阵分解为多个小矩阵的行列式乘积,再递归计算。在处理分数输出时,需注意避免无限循环和除零错误,如在分数运算前先约简,确保分子分母互质,且所有计算基于整数进行,最后再转为浮点数,以避免浮点数误差。 为提升代码可读性和可维护性,建议采用面向对象编程,将矩阵类和分数类封装,每个类有明确功能和接口,便于后续扩展如矩阵求逆、计算特征值等功能。 总结C++实现行列式计算的关键步骤:一是定义矩阵类和分数类;二是实现矩阵基本操作;三是设计行列式计算函数;四是用分数类处理精确计算;五是编写测试用例验证程序正确性。通过这些步骤,可构建一个高效准确的行列式计算程序,支持分数形式计算,为C++编程和线性代数应用奠定基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值