pytorch Tutorial of training one gpu

本文介绍了一种使用卷积神经网络(CNN)在CIFAR10数据集上进行图像分类的方法。首先,我们加载并标准化了CIFAR10数据集,然后定义了一个CNN模型,接着在GPU上训练该模型,并评估了其在测试集上的准确性。

'''
Loading and normalizing CIFAR10
'''
import torch
import torchvision
import torchvision.transforms as transforms

'''
The output of torchvision datasets are PILImage images of range [0, 1].
We transform them to Tensors of normalized range [-1, 1].
'''
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=256,
                                          shuffle=True, num_workers=32)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=256,
                                         shuffle=True, num_workers=32)
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

'''
Define a Convolution Neural Network
'''
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 160, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(160, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()
print(net)


'''
Define a Loss fuction and optimizer
'''
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

'''
Train the network
We have to loop over our data iterator, 
and feed the inputs to the network and optimize.
'''

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
net.to(device)

for epoch in range(200):

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        
        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        # print(loss.item())
        if i % 12000 == 11999:
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')


correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        images, labels = images.to(device), labels.to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%'
      % (100 * correct / total))

 

源码来自:https://pan.quark.cn/s/d16ee28ac6c2 ### 上线流程 Java Web平台在实施Java Web应用程序的发布过程时,通常包含以下几个关键阶段:应用程序归档、生产环境配置文件替换、系统部署(涉及原有应用备份、Tomcat服务关闭、缓存数据清除、新版本WAR包上传及服务重启测试)以及相关异常情况记录。以下将对各阶段进行深入说明。#### 一、应用程序归档1. **归档前的准备工作**: - 需要事先验证Java开发环境的变量配置是否正确。 - 一般情况下,归档操作会在项目开发工作结束后执行,此时应确认所有功能模块均已完成测试并符合发布标准。 2. **具体执行步骤**: - 采用`jar`指令执行归档操作。例如,在指定文件夹`D:\apache-tomcat-7.0.2\webapps\prsncre`下运行指令`jar –cvf prsncre.war`。 - 执行该指令后,会生成一个名为`prsncre.war`的Web应用归档文件,其中包含了项目的全部资源文件及编译后的程序代码。#### 二、生产环境配置文件调换1. **操作目标**:确保线上运行环境与开发或测试环境的参数设置存在差异,例如数据库连接参数、服务监听端口等信息。2. **执行手段**: - 将先前成功部署的WAR包中`xml-config`文件夹内的配置文件进行复制处理。 - 使用这些复制得到的配置文件对新生成的WAR包内的对应文件进行覆盖更新。 #### 三、系统部署1. **原版应用备份**: - 在发布新版本之前,必须对当前运行版本进行数据备份。例如,通过命令`cp -r prsncre ../templewebapps/`将旧版应用复...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值