codeforces 229 D Towers 贪心+DP

本文解析了 Codeforces 229D 题目,该题要求通过一系列操作使一系列塔的高度形成非递减序列。文章详细介绍了如何利用动态规划的方法求解最小操作次数,并给出了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  

http://codeforces.com/problemset/problem/229/D


   题目大意n(1<=n<=5,000)座塔排在一条直线上,从左到右每个塔的高度分别为hi(1<=hi<=100,000),每次操作你可以选择一座塔(假设是第i座),用吊车把它吊起来,然后放到与它相邻的一座塔上(可以是第i-1座也可以是第i+1座),这样,新塔的高度为两座塔的和,完成操作后,塔的总数减少一座。问最少需要多少次操作可以使得所有的塔从左到右形成一个非递减序列。


 题目分析:刚拿到这题的时候想的是贪心,然而贪心在最后处理时可能会导致其余塔高无法组成新塔。考虑dp;

首先寻找题目当中的状态,显然,当已知前j座塔高的最小操作步数时时,当前塔i的最小操作步数可以由前j座塔转移过来,满足无后效性原则;方程:f[i]=f[j]+i-j-1;  接着考虑转移条件:当这座新塔高大于等于前面那座塔高(记录为h[i])就符合转移条件;于是用sum[i]数组作为前i个的塔高之和方便处理。  初始化:由定义可知默认为INF;f[0]=0;h[0]=0;




#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define phiF (1000000006)
#define MAXN (1000000+10)
typedef long long ll;

int n,a[5005],f[5005],sum[5005],h[5005],x;

int main(){
	scanf("%d",&n);
	For (i,n){
		scanf("%d",&x);
	    sum[i]=sum[i-1]+x;
    }
    
	MEMI(h);
	MEMI(f);
	f[0]=0;
	h[0]=0;
	For (i,n){
		Rep (j,i){
		if (sum[i]-sum[j]>=h[j]&&f[i]>=f[j]+i-j-1){
			f[i]=f[j]+i-j-1;
			if (h[i]>sum[i]-sum[j])h[i]=sum[i]-sum[j];	
		    }
		}

	}
	
	printf("%d",f[n]);
	
}

  



引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.youkuaiyun.com/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值