A reversible prime in any number system is a prime whose “reverse” in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line “Yes” if N is a reversible prime with radix D, or “No” if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
解题思路:看题太快,题目要求原先的数和反转之后的数都是素数才输出Yes,一直以为是反转后的数是素数就好了,还有判断素数居然写错了,坑爹。
#include<iostream>
#include<stdio.h>
#include<string>
#include<math.h>
using namespace std;
int reverseNum(int num, int d){
string reNum = "";
while (num){
reNum += (num%d) + '0';
num /= d;
}
int ret = 0;
for (int i = 0; i < reNum.length(); i++){
ret += (reNum[reNum.length() - i - 1] - '0')*(int)pow(d*1.0, i*1.0);
}
return ret;
}
bool isPrime(int n){
if (n < 2){
return false;
}
for (int i = 2; i*i <= n; i++){
if (n%i == 0){
return false;
}
}
return true;
}
int priFlag[100005];
int main(){
for (int i = 0; i < 100005; i++){
if (isPrime(i)){
priFlag[i] = 1;
}
else{
priFlag[i] = 0;
}
}
for (int n; scanf("%d", &n) != EOF && n >= 0;){
int d;
scanf("%d", &d);
int renum = reverseNum(n, d);
if (priFlag[renum] && priFlag[n]){
printf("Yes\n");
}
else{
printf("No\n");
}
}
return 0;
}
本文介绍了一种算法,用于判断一个给定的正整数是否为特定进制下的可逆素数。可逆素数是指在一个数系中,该数及其在该数系中的‘反转’均为素数的情况。文章提供了详细的实现代码,并通过示例说明了如何使用该算法。
258

被折叠的 条评论
为什么被折叠?



