python训练day48 随机函数与广播机制

加法的广播机制

import torch

# 创建原始张量
a = torch.tensor([[10], [20], [30]])  # 形状: (3, 1)
b = torch.tensor([1, 2, 3])          # 形状: (3,)

result = a + b
# 广播过程
# 1. b补全维度: (3,) → (1, 3)
# 2. a扩展列: (3, 1) → (3, 3)
# 3. b扩展行: (1, 3) → (3, 3)
# 最终形状: (3, 3)


print("原始张量a:")
print(a)


print("\n原始张量b:")
print(b)


print("\n广播后a的值扩展:")
print(torch.tensor([[10, 10, 10],
                    [20, 20, 20],
                    [30, 30, 30]]))  # 实际内存中未复制,仅逻辑上扩展

print("\n广播后b的值扩展:")
print(torch.tensor([[1, 2, 3],
                    [1, 2, 3],
                    [1, 2, 3]]))  # 实际内存中未复制,仅逻辑上扩展

print("\n加法结果:")
print(result)

三维张量与二维张量相加

# 创建原始张量
a = torch.tensor([[[1], [2]], [[3], [4]]])  # 形状: (2, 2, 1)
b = torch.tensor([[10, 20]])               # 形状: (1, 2)

# 广播过程
# 1. b补全维度: (1, 2) → (1, 1, 2)
# 2. a扩展第三维: (2, 2, 1) → (2, 2, 2)
# 3. b扩展第一维: (1, 1, 2) → (2, 1, 2)
# 4. b扩展第二维: (2, 1, 2) → (2, 2, 2)
# 最终形状: (2, 2, 2)

result = a + b
print("原始张量a:")
print(a)


print("\n原始张量b:")
print(b)


print("\n广播后a的值扩展:")
print(torch.tensor([[[1, 1],
                     [2, 2]],
                    [[3, 3],
                     [4, 4]]]))  # 实际内存中未复制,仅逻辑上扩展

print("\n广播后b的值扩展:")
print(torch.tensor([[[10, 20],
                     [10, 20]],
                    [[10, 20],
                     [10, 20]]]))  # 实际内存中未复制,仅逻辑上扩展

print("\n加法结果:")
print(result)

二维张量与标亮相加

# 创建原始张量
a = torch.tensor([[1, 2], [3, 4]])  # 形状: (2, 2)
b = 10                              # 标量,形状视为 ()

# 广播过程
# 1. b补全维度: () → (1, 1)
# 2. b扩展第一维: (1, 1) → (2, 1)
# 3. b扩展第二维: (2, 1) → (2, 2)
# 最终形状: (2, 2)

result = a + b
print("原始张量a:")
print(a)
# 输出:
# tensor([[1, 2],
#         [3, 4]])

print("\n标量b:")
print(b)
# 输出: 10

print("\n广播后b的值扩展:")
print(torch.tensor([[10, 10],
                    [10, 10]]))  # 实际内存中未复制,仅逻辑上扩展

print("\n加法结果:")
print(result)
# 输出:
# tensor([[11, 12],
#         [13, 14]])

高维张量与地维张量相加

# 创建原始张量
a = torch.tensor([[[1, 2], [3, 4]]])  # 形状: (1, 2, 2)
b = torch.tensor([[5, 6]])            # 形状: (1, 2)

# 广播过程
# 1. b补全维度: (1, 2) → (1, 1, 2)
# 2. b扩展第二维: (1, 1, 2) → (1, 2, 2)
# 最终形状: (1, 2, 2)

result = a + b
print("原始张量a:")
print(a)
# 输出:
# tensor([[[1, 2],
#          [3, 4]]])

print("\n原始张量b:")
print(b)
# 输出:
# tensor([[5, 6]])

print("\n广播后b的值扩展:")
print(torch.tensor([[[5, 6],
                     [5, 6]]]))  # 实际内存中未复制,仅逻辑上扩展

print("\n加法结果:")
print(result)
# 输出:
# tensor([[[6, 8],
#          [8, 10]]])

乘法的广播机制

批量矩阵与单个矩阵相乘

import torch

# A: 批量大小为2,每个是3×4的矩阵
A = torch.randn(2, 3, 4)  # 形状: (2, 3, 4)

# B: 单个4×5的矩阵
B = torch.randn(4, 5)     # 形状: (4, 5)

# 广播过程:
# 1. B补全维度: (4, 5) → (1, 4, 5)
# 2. B扩展第一维: (1, 4, 5) → (2, 4, 5)
# 矩阵乘法: (2, 3, 4) @ (2, 4, 5) → (2, 3, 5)
result = A @ B            # 结果形状: (2, 3, 5)

print("A形状:", A.shape)  # 输出: torch.Size([2, 3, 4])
print("B形状:", B.shape)  # 输出: torch.Size([4, 5])
print("结果形状:", result.shape)  # 输出: torch.Size([2, 3, 5])

批量矩阵与批量矩阵相乘

# A: 批量大小为3,每个是2×4的矩阵
A = torch.randn(3, 2, 4)  # 形状: (3, 2, 4)

# B: 批量大小为1,每个是4×5的矩阵
B = torch.randn(1, 4, 5)  # 形状: (1, 4, 5)

# 广播过程:
# B扩展第一维: (1, 4, 5) → (3, 4, 5)
# 矩阵乘法: (3, 2, 4) @ (3, 4, 5) → (3, 2, 5)
result = A @ B            # 结果形状: (3, 2, 5)

print("A形状:", A.shape)  # 输出: torch.Size([3, 2, 4])
print("B形状:", B.shape)  # 输出: torch.Size([1, 4, 5])
print("结果形状:", result.shape)  # 输出: torch.Size([3, 2, 5])

三维张量与二维张量相乘

# A: 批量大小为2,通道数为3,每个是4×5的矩阵
A = torch.randn(2, 3, 4, 5)  # 形状: (2, 3, 4, 5)

# B: 单个5×6的矩阵
B = torch.randn(5, 6)        # 形状: (5, 6)

# 广播过程:
# 1. B补全维度: (5, 6) → (1, 1, 5, 6)
# 2. B扩展第一维: (1, 1, 5, 6) → (2, 1, 5, 6)
# 3. B扩展第二维: (2, 1, 5, 6) → (2, 3, 5, 6)
# 矩阵乘法: (2, 3, 4, 5) @ (2, 3, 5, 6) → (2, 3, 4, 6)
result = A @ B               # 结果形状: (2, 3, 4, 6)

print("A形状:", A.shape)     # 输出: torch.Size([2, 3, 4, 5])
print("B形状:", B.shape)     # 输出: torch.Size([5, 6])
print("结果形状:", result.shape)  # 输出: torch.Size([2, 3, 4, 6])

@浙大疏锦行

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值