ZOJ 3265 Strange Game (最大匹配)

本文探讨了游戏开发中如何应用大数据分析技术,通过案例分析展示了如何利用大数据提升游戏性能、优化玩家体验,并深入讨论了游戏数据的收集、处理与分析方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Strange Game

Time Limit: 3 Seconds      Memory Limit: 32768 KB

There is a strange game played on a special machine. The game has m prizes labeled from 0 to m-1. First, you are given n tickets, on which there is a number ai. For each time, you can put one ticket into the machine. By pressing the button on the machine you will get a number. You can press the button as many times as you like, but at least once. If you press k times, the number from the machine will be aik mod m, namely bi, and then you can take away the prize labeled bi as your trophy. Note that one ticket can only be used once, and same bi refers to same prize, which you can only take once.

Given nm and ai, you need to find the maximum number of different prizes you can get.

Input

The input contains no more than 30 cases. Each case has 2 lines. The first is two integers nm (0 ≤ n ≤ 200, 0 < m ≤ 109). The second line contains n integers a0a1, ..., an-1 (0 ≤ ai ≤ 109).

Proceed to the end of file.

Output

For each case output a integer, indicating the maximum number of different prizes you can get.

Sample Input

2 2
1 2

Sample Output

2

Author: LI, Cheng

Source: ZOJ Monthly, November 2009


这道题还是比较好的。很容易看出最大匹配的模型,但是如果把a[i]^k全部生成的话,右边的点数会太大,即使取模有循环节。如此,需要利用一个结论。如果一个a[i]的k次方,可以生成大于n种不同的数,这个时候就不用再继续生成了,因为n个匹配的点已经足够保证在不干扰其他点匹配的情况下,找到一种匹配方式。


#include<cstdio>
#include<map>
#include<queue>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<list>
#include<set>
#include<cmath>
using namespace std;
const int maxn = 1e5 + 5;
const int INF = 1e9;
const double eps = 1e-6;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> P;
#define fi first
#define se second

struct Edge {
  int from, to, cap, flow;
};

struct Dinic {
  int n, m, s, t;
  vector<Edge> edges;    // 边数的两倍
  vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
  bool vis[maxn];        // BFS使用
  int d[maxn];           // 从起点到i的距离
  int cur[maxn];         // 当前弧指针

  void ClearAll(int n) {
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }

  void ClearFlow() {
    for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
  }

  void AddEdge(int from, int to, int cap) {
    //cout << from << ' ' << to << ' ' << cap << endl;
    edges.push_back((Edge){from, to, cap, 0});
    edges.push_back((Edge){to, from, 0, 0});
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
  }

  bool BFS() {
    memset(vis, 0, sizeof(vis));
    queue<int> Q;
    Q.push(s);
    vis[s] = 1;
    d[s] = 0;
    while(!Q.empty()) {
      int x = Q.front(); Q.pop();
      for(int i = 0; i < G[x].size(); i++) {
        Edge& e = edges[G[x][i]];
        if(!vis[e.to] && e.cap > e.flow) {
          vis[e.to] = 1;
          d[e.to] = d[x] + 1;
          Q.push(e.to);
        }
      }
    }
    return vis[t];
  }

  int DFS(int x, int a) {
    if(x == t || a == 0) return a;
    int flow = 0, f;
    for(int& i = cur[x]; i < G[x].size(); i++) {
      Edge& e = edges[G[x][i]];
      if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
        e.flow += f;
        edges[G[x][i]^1].flow -= f;
        flow += f;
        a -= f;
        if(a == 0) break;
      }
    }
    return flow;
  }

  int Maxflow(int s, int t) {
    this->s = s; this->t = t;
    int flow = 0;
    while(BFS()) {
      memset(cur, 0, sizeof(cur));
      flow += DFS(s, INF);
    }
    return flow;
  }
};

Dinic g;
int a[maxn];
map<LL, int> M;

int main(){
    int n, m;
    while(scanf("%d%d", &n, &m) != EOF){
        for(int i = 1;i <= n;i++){
            cin >> a[i];
            a[i] %= m;
        }
        int source = 0, sink = n*n+1;
        g.ClearAll(n*n+5);
        for(int i = 1;i <= n;i++)
            g.AddEdge(source, i, 1);
        M.clear();
        int cnt = n+1;
        for(int i = 1;i <= n;i++){
            LL now = a[i];
            map<LL, int> vis;
            vis.clear();
            int num = 0;
            while(1){
                vis[now] = 1;
                if(M.count(now)==0){
                    g.AddEdge(cnt, sink, 1);
                    M[now] = cnt++;
                }
                g.AddEdge(i, M[now], 1);
                now = (now*a[i])%m;
                num++;
                if(num > n || vis.count(now))
                    break;
            }
        }
        cout << g.Maxflow(source, sink) << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值