sgu 252. Railway Communication (最小费用最大流)

本文介绍了一个基于费用流算法解决的问题:在一个有向无环图中,寻找最少数量且不相交的路径来覆盖所有节点,并使得这些路径上的总成本最小。通过将节点拆分为入点和出点的方式,构建一个适合运行费用流算法的网络。
部署运行你感兴趣的模型镜像
252. Railway Communication
time limit per test: 0.25 sec.
memory limit per test: 65536 KB
input: standard
output: standard



There are N towns in the country, connected with M railroads. All railroads are one-way, the railroad system is organized in such a way that there are no cycles. It's necessary to choose the best trains schedule, taking into account some facts. 
Train path is the sequence of towns passed by the train. The following conditions must be satisfied. 
1) At most one train path can pass along each railroad. 
2) At most one train path can pass through each town, because no town can cope with a large amount of transport. 
3) At least one train path must pass through each town, or town economics falls into stagnation. 
4) The number of paths must be minimal possible. 
Moreover, every railroad requires some money for support, i-th railroad requires c[i] coins per year to keep it intact. That is why the president of the country decided to choose such schedule that the sum of costs of maintaining the railroads used in it is minimal possible. Of course, you are to find such schedule.

Input
The first line of input contains two integers N and M (1<=N<=100; 0<=M<=1000). Next M lines describe railroads. Each line contains three integer numbers a[i], b[i] and c[i] - the towns that the railroad connects (1<=a[i]<=N; 1<=b[i]<=N, a[i]<>b[i]) and the cost of maintaining it (0<=c[i]<=1000). Since the road is one-way, the trains are only allowed to move along it from town a[i] to town b[i]. Any two towns are connected by at most one railroad.

Output
On the first line output K - the number of paths in the best schedule and C - the sum of costs of maintaining the railroads in the best schedule. 
After that output K lines, for each train path first output L[i] (1<=L[i]<=N) - the number of towns this train path uses, and then L[i] integers identifying the towns on the train path. If there are several optimal solutions output any of them.

Sample test(s)

Input

4 4 1 2 1 1 3 2 3 4 2 2 4 2
Output

2 3 
2 1 2 
2 3 4


一个有向无环图,要求用最少的不相交路径覆盖所有的点,多解使路径权和最小。把每个点拆分成入点和出点,原图中的边a到b,对应为aout到bin,然后跑费用流。这样匹配,每一个没有被匹配过的入点,就意味着必须有一条路径以它为起点。


#include<cstdio>
#include<map>
#include<queue>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<list>
#include<set>
#include<cmath>
using namespace std;
const int maxn = 1e3 + 5;
const int INF = 1e9;
const double eps = 1e-6;
typedef unsigned long long ULL;
typedef long long LL;
typedef pair<int, int> P;
#define fi first
#define se second

struct Edge {
  int from, to, cap, flow, cost;
};

struct MCMF {
  int n, m, s, t;
  vector<Edge> edges;
  vector<int> G[maxn];
  int inq[maxn];         // 是否在队列中
  int d[maxn];           // Bellman-Ford,单位流量的费用
  int p[maxn];           // 上一条弧
  int a[maxn];           // 可改进量

  void init(int n) {
    this->n = n;
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }

  void AddEdge(int from, int to, int cap, int cost) {
    edges.push_back((Edge){from, to, cap, 0, cost});
    edges.push_back((Edge){to, from, 0, 0, -cost});
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
  }

  bool BellmanFord(int s, int t, int &flow,int &cost) {
    for(int i = 0; i < n; i++) d[i] = INF;
    memset(inq, 0, sizeof(inq));
    d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;

    queue<int> Q;
    Q.push(s);
    while(!Q.empty()) {
      int u = Q.front(); Q.pop();
      inq[u] = 0;
      for(int i = 0; i < G[u].size(); i++) {
        Edge& e = edges[G[u][i]];
        if(e.cap > e.flow && d[e.to] > d[u] + e.cost) {
          d[e.to] = d[u] + e.cost;
          p[e.to] = G[u][i];
          a[e.to] = min(a[u], e.cap - e.flow);
          if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; }
        }
      }
    }
    if(d[t] == INF) return false;//s-t不连通,失败退出
    flow += a[t];
    cost += d[t] * a[t];
    int u = t;
    while(u != s) {
      edges[p[u]].flow += a[t];
      edges[p[u]^1].flow -= a[t];
      u = edges[p[u]].from;
    }
    return true;
  }

  // 需要保证初始网络中没有负权圈
  int Mincost(int s, int t, int& flow) {
    int cost = 0;
    while(BellmanFord(s, t,flow, cost));
    return cost;
  }

    void print(int total){
        for(int i = total;i >= 1;i--){
            int e = G[i+total][0];
            int f = edges[e].flow;
            if(f == 0){
                vector<int> path;
                path.clear();
                path.push_back(i);
                int pos = i;
                int tag = 1;
                while(tag){
                    tag = 0;
                    for(int u = 0;u < G[pos].size();u++){
                        int e = G[pos][u];
                        int f = edges[e].flow;
                        if(f != 0 && edges[e].to > total){
                            pos = edges[e].to-total;
                            path.push_back(pos);
                            tag = 1;
                            break;
                        }
                    }
                }

                printf("%d", path.size());
                for(int j = 0;j < path.size();j++){
                    printf(" %d", path[j]);
                }
                puts("");
            }
        }
    }
};

MCMF solver;

int main(){
    int n, m;
    while(scanf("%d%d", &n, &m) != EOF){
        solver.init(2*n+5);
        int source = 0, sink = 2*n+1;
        for(int i = 1;i <= n;i++){
            solver.AddEdge(source, i, 1, 0);
            solver.AddEdge(i+n, sink, 1, 0);
        }
        while(m--){
            int x, y, c;
            scanf("%d%d%d", &x, &y, &c);
            solver.AddEdge(x, y+n, 1, c);
        }
        int flow = 0;
        int cost = solver.Mincost(source, sink, flow);
        printf("%d %d\n", n-flow, cost);
        solver.print(n);
    }
    return 0;
}


您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

【故障诊断】【pytorch】基于CNN-LSTM故障分类的轴承故障诊断研究[西储大学数据](Python代码实现)内容概要:本文介绍了基于CNN-LSTM神经网络模型的轴承故障分类方法,利用PyTorch框架实现,采用西储大学(Case Western Reserve University)公开的轴承故障数据集进行实验验证。该方法结合卷积神经网络(CNN)强大的特征提取能力和长短期记忆网络(LSTM)对时序数据的建模优势,实现对轴承不同故障类型和严重程度的高精度分类。文中详细阐述了数据预处理、模型构建、训练流程及结果分析过程,并提供了完整的Python代码实现,属于典型的工业设备故障诊断领域深度学习应用研究。; 适合人群:具备Python编程基础和深度学习基础知识的高校学生、科研人员及工业界从事设备状态监测与故障诊断的工程师,尤其适合正在开展相关课题研究或希望复现EI级别论文成果的研究者。; 使用场景及目标:① 学习如何使用PyTorch搭建CNN-LSTM混合模型进行时间序列分类;② 掌握轴承振动信号的预处理与特征学习方法;③ 复现并改进基于公开数据集的故障诊断模型,用于学术论文撰写或实际工业场景验证; 阅读建议:建议读者结合提供的代码逐行理解模型实现细节,重点关注数据加载、滑动窗口处理、网络结构设计及训练策略部分,鼓励在原有基础上尝试不同的网络结构或优化算法以提升分类性能。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值