D | Dominator |
In graph theory, a node X dominates a node Y if every path from the predefined start node to Y must go through X. If Y is not reachable from the start node then node Y does not have any dominator. By definition, every node reachable from the start node dominates itself. In this problem, you will be given a directed graph and you have to find the dominators of every node where the 0th node is the start node.
As an example, for the graph shown right, 3 dominates 4 since all the paths from 0 to 4 must pass through3. 1 doesn't dominate 3 since there is a path 0-2-3 that doesn't include 1.
Input
The first line of input will contain T (≤ 100) denoting the number of cases.
Each case starts with an integer N (0 < N < 100) that represents the number of nodes in the graph. The next N lines contain N integers each. If the jth(0 based) integer of ith(0 based) line is 1, it means that there is an edge from node i to node j and similarly a 0 means there is no edge.
Output
For each case, output the case number first. Then output 2N+1 lines that summarizes the dominator relationship between every pair of nodes. If node A dominates node B, output 'Y' in cell (A, B), otherwise output 'N'. Cell (A, B) means cell at Ath row and Bth column. Surround the output with |, + and – to make it more legible. Look at the samples for exact format.
Sample Input | Output for Sample Input |
2 5 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 | Case 1: +---------+ |Y|Y|Y|Y|Y| +---------+ |N|Y|N|N|N| +---------+ |N|N|Y|N|N| +---------+ |N|N|N|Y|Y| +---------+ |N|N|N|N|Y| +---------+ Case 2: +-+ |Y| +-+ |
Problem Setter: Sohel Hafiz, Special Thanks: Kazi Rakibul Hossain, Jane Alam Jan
n的范围很小,枚举每个点,去掉它相邻的边,然后dfs找从0能到达的所有点,复杂度O(n^3)。需要注意的是 If Y is not reachable from the start node then node Y does not have any dominator.没特判这个wa了一次,然后因为可能有环,dfs时注意走过的点就不要再搜下去了,re一次。
#include <cstdio>
#include <algorithm>
#include <vector>
#include <map>
#include <queue>
#include <iostream>
#include <stack>
#include <set>
#include <cstring>
#include <stdlib.h>
#include <cmath>
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const int maxn = 100 + 5;
int n;
int G[maxn][maxn];
int temG[maxn][maxn];
int vis[maxn];
int ans[maxn][maxn];
void dfs(int x){
vis[x] = 1;
for(int i = 0;i < n;i++){
if(temG[x][i] == 1 && vis[i] == 0)
dfs(i);
}
}
void print(){
cout << '+';
for(int i = 0;i < 2*n-1;i++) cout << '-';
cout << '+' << endl;
}
int main(){
int t, kase = 0;
scanf("%d", &t);
while(t--){
kase++;
scanf("%d", &n);
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
scanf("%d", &G[i][j]);
}
}
memset(ans, 0, sizeof(ans));
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
for(int k = 0;k < n;k++){
if(j == i || k == i) temG[j][k] = 0;
else temG[j][k] = G[j][k];
}
}
memset(vis, 0, sizeof(vis));
dfs(0);
for(int j = 0;j < n;j++){
if(vis[j] == 1){
ans[i][j] = 1;
}
}
}
ans[0][0] = 0;
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++)
temG[i][j] = G[i][j];
}
memset(vis, 0, sizeof(vis));
dfs(0);
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
if(vis[i] == 0 || vis[j] == 0){
ans[i][j] = 1;
}
}
}
printf("Case %d:\n", kase);
print();
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
cout << '|';
if(ans[i][j] == 0) cout << 'Y';
else cout << 'N';
}
cout << '|' << endl;
print();
}
}
return 0;
}