Roadblocks
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 20419 | Accepted: 7157 |
Description
Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.
The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.
The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).
Input
Line 1: Two space-separated integers: N and R
Lines 2..R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)
Output
Line 1: The length of the second shortest path between node 1 and node N
Sample Input
4 4 1 2 100 2 4 200 2 3 250 3 4 100
Sample Output
450
Hint
Two routes: 1 -> 2 -> 4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)
Source
思路:次短路其实就是在最短路的基础上再添进来一条边使得起点到x的最短路+vis[x][y]+y至终点的最短路 最小
跑两遍最短路,再枚举一个边即可
#include <iostream>
#include <cstring>
//#pragma GCC optimize(2)
#include<time.h>
#include <queue>
#include <stack>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxn 5005
#define inf 1e18
#define eps 0.00001
typedef long long ll;
const ll mod = 1e9+7;
const double pi = acos(-1);
ll n,r,ans1[maxn],ans2[maxn];
vector < pair< ll, ll> > arr[maxn];
bool flag[maxn];
struct Why
{
ll now,dis;
Why(ll a, ll b)
{
now = a;
dis = b;
}
bool operator < (const Why a) const
{
return dis > a.dis;
}
};
void slove(ll x,ll *ans)
{
priority_queue < Why> A;
A.push( Why(x,0) );
while(!A.empty())
{
Why temp = A.top();
A.pop();
if( flag[temp.now] == 0 )
{
flag[temp.now] = 1;
ans[ temp.now ] = min(ans[temp.now],temp.dis );
for(ll i = 0; i < arr[temp.now].size(); i++)
{
A.push( Why( arr[temp.now][i].first, temp.dis+arr[temp.now][i].second ) );
}
}
}
return ;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
//freopen("D:\\test1.in","w",stdout);
//srand((int)time(0));
cin >> n >> r;
memset(ans1,0x3f3f,sizeof(ans1));
memset(ans2,0x3f3f,sizeof(ans2));
while(r--)
{
ll a,b,c;
cin >> a >> b >> c;
arr[a].push_back( make_pair(b,c) );
arr[b].push_back( make_pair(a,c) );
}
slove(1,ans1);
memset(flag,0,sizeof(flag));
slove(n,ans2);
ll ans = inf;
for(ll i = 1; i <= n; i++)
{
for(ll k = 0; k < arr[i].size(); k++)
{
if( ans1[i]+ans2[ arr[i][k].first ]+ arr[i][k].second > ans1[n])
ans = min(ans,ans1[i]+ans2[ arr[i][k].first ]+ arr[i][k].second);
}
}
cout << ans << endl;
return 0;
}

本文深入探讨了次短路径算法的实现,通过一个具体的农场道路网络案例,详细讲解了如何找到从起点到终点的第二短路径。算法首先利用两次最短路径算法计算出所有可能的最短路径,然后通过枚举每条边来找出次短路径,确保其长度比最短路径长但不超过任何其他路径。

被折叠的 条评论
为什么被折叠?



