【次短路】POJ3255 Roadblocks

次短路径算法解析
本文深入探讨了次短路径算法的实现,通过一个具体的农场道路网络案例,详细讲解了如何找到从起点到终点的第二短路径。算法首先利用两次最短路径算法计算出所有可能的最短路径,然后通过枚举每条边来找出次短路径,确保其长度比最短路径长但不超过任何其他路径。

Roadblocks

Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 20419 Accepted: 7157

Description

Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.

The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.

The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).

Input

Line 1: Two space-separated integers: N and R
Lines 2..R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)

Output

Line 1: The length of the second shortest path between node 1 and node N

Sample Input

4 4
1 2 100
2 4 200
2 3 250
3 4 100

Sample Output

450

Hint

Two routes: 1 -> 2 -> 4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)

Source

USACO 2006 November Gold


思路:次短路其实就是在最短路的基础上再添进来一条边使得起点到x的最短路+vis[x][y]+y至终点的最短路 最小

跑两遍最短路,再枚举一个边即可


#include <iostream>
#include <cstring>
//#pragma GCC optimize(2)
#include<time.h>
#include <queue>
#include <stack>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxn 5005
#define inf 1e18
#define eps 0.00001
typedef long long ll;
const ll mod = 1e9+7;
const double pi = acos(-1);

ll n,r,ans1[maxn],ans2[maxn];
vector < pair< ll, ll> > arr[maxn];
bool flag[maxn];

struct Why
{
    ll now,dis;
    Why(ll a, ll b)
    {
        now = a;
        dis = b;
    }
    bool operator < (const Why a) const
    {
        return dis > a.dis;
    }

};

void slove(ll x,ll *ans)
{
    priority_queue < Why> A;
    A.push( Why(x,0)  );

    while(!A.empty())
    {
        Why temp = A.top();
        A.pop();

        if( flag[temp.now] == 0 )
        {
            flag[temp.now] = 1;

            ans[ temp.now  ] = min(ans[temp.now],temp.dis );

            for(ll i = 0; i < arr[temp.now].size(); i++)
            {
                A.push( Why( arr[temp.now][i].first, temp.dis+arr[temp.now][i].second  )  );
            }

        }

    }

    return ;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);cout.tie(0);

    //freopen("D:\\test1.in","w",stdout);
    //srand((int)time(0));

    cin >> n >> r;

    memset(ans1,0x3f3f,sizeof(ans1));
    memset(ans2,0x3f3f,sizeof(ans2));

    while(r--)
    {
        ll a,b,c;
        cin >> a >> b >> c;
        arr[a].push_back( make_pair(b,c) );
        arr[b].push_back( make_pair(a,c) );
    }

    slove(1,ans1);
    memset(flag,0,sizeof(flag));
    slove(n,ans2);

    ll ans = inf;

    for(ll i = 1; i <= n; i++)
    {
        for(ll k = 0; k < arr[i].size(); k++)
        {
            if( ans1[i]+ans2[ arr[i][k].first ]+ arr[i][k].second > ans1[n])
                ans = min(ans,ans1[i]+ans2[ arr[i][k].first ]+ arr[i][k].second);
        }
    }
    
    cout << ans << endl;
    
    return 0;
}

 

标题基于Python的自主学习系统后端设计与实现AI更换标题第1章引言介绍自主学习系统的研究背景、意义、现状以及本文的研究方法和创新点。1.1研究背景与意义阐述自主学习系统在教育技术领域的重要性和应用价值。1.2国内外研究现状分析国内外在自主学习系统后端技术方面的研究进展。1.3研究方法与创新点概述本文采用Python技术栈的设计方法和系统创新点。第2章相关理论与技术总结自主学习系统后端开发的相关理论和技术基础。2.1自主学习系统理论阐述自主学习系统的定义、特征和理论基础。2.2Python后端技术栈介绍DjangoFlask等Python后端框架及其适用场景。2.3数据库技术讨论关系型和非关系型数据库在系统中的应用方案。第3章系统设计与实现详细介绍自主学习系统后端的设计方案和实现过程。3.1系统架构设计提出基于微服务的系统架构设计方案。3.2核心模块设计详细说明用户管理、学习资源管理、进度跟踪等核心模块设计。3.3关键技术实现阐述个性化推荐算法、学习行为分析等关键技术的实现。第4章系统测试与评估对系统进行功能测试和性能评估。4.1测试环境与方法介绍测试环境配置和采用的测试方法。4.2功能测试结果展示各功能模块的测试结果和问题修复情况。4.3性能评估分析分析系统在高并发等场景下的性能表现。第5章结论与展望总结研究成果并提出未来改进方向。5.1研究结论概括系统设计的主要成果和技术创新。5.2未来展望指出系统局限性并提出后续优化方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值