问题描述与算法描述见《算法导论》,算法实现代码如下:
// 矩阵链乘最优解
#include <stdio.h>
#include <limits.h>
#include <memory.h>


// 计算辅助表
// 输入: 矩阵维数数组p[n+1]
// 输出: 辅助表m[i, j], s[i, j]
void matrix_chain_order(int p[], int length, int **m, int **s)
{
int N = length;
for (int i=0; i<N; ++i)
{
m[i][i] = 0; // 长度为1的矩阵链,标量乘法运算次数为0
}

for (int L=2; L<=N; ++L) // L是矩阵链长度
{
for (int i=0; i<N-L+1; ++i) // 矩阵链起始下标
{
int j=i+L-1; // 矩阵链结尾下标
m[i][j] = INT_MAX; // 初始设定为无穷大(用INT_MAX表示)
for (int k=i; k<j; ++k) // 从k处将矩阵链一分为二
{
int q = m[i][k] + m[k+1][j] + p[i] * p[k+1] * p[j+1];
if (q < m[i][j])
{
m[i][j] = q;
s[i][j] = k;
}
}
}
}
}

// 构造最优解
void print_optimal_parens(int **s, int i, int j)
{
if (i==j)
{
putchar('A');
putchar('1' + i);
}
else
{
putchar('(');
print_optimal_parens(s, i, s[i][j]);
print_optimal_parens(s, s[i][j] + 1, j);
putchar(')');
}
}

// 打印矩阵
void print_matrix(int **m, int n)
{
for (int i=0; i<n; ++i)
{
for (int j=0; j<n; ++j)
{
printf("%d ", m[i][j]);
}
printf(" ");
}
}

int main()
{
int p[] = {30, 35, 15, 5, 10, 20, 25};
//int p[] = {5, 10, 3, 12, 5, 50, 6};
int n = sizeof(p)/sizeof(int) - 1;

int **m = new int*[n];
for (int i=0; i<n; ++i)
{
m[i] = new int[n];
memset(m[i], 0, sizeof(int)*n);
}

int **s = new int*[n];
for (int i=0; i<n; ++i)
{
s[i] = new int[n];
memset(s[i], 0, sizeof(int)*n);
}

matrix_chain_order(p, n, m, s);

printf("m[i, j]: ");
print_matrix(m, n);
printf("s[i, j]: ");
print_matrix(s, n);

print_optimal_parens(s, 0, 5);
printf(" ");

for (int i=0; i<n; ++i)
{
delete [] m[i];
}
delete [] m;

for (int i=0; i<n; ++i)
{
delete [] s[i];
}
delete [] s;
return 0;
}
/*
测试
输入:{30, 35, 15, 5, 10, 20, 25}
输出:
m[i, j]:
0 15750 7875 9375 11875 15125
0 0 2625 4375 7125 10500
0 0 0 750 2500 5375
0 0 0 0 1000 3500
0 0 0 0 0 5000
0 0 0 0 0 0
s[i, j]:
0 0 0 2 2 2
0 0 1 2 2 2
0 0 0 2 2 2
0 0 0 0 3 4
0 0 0 0 0 4
0 0 0 0 0 0
((A1(A2A3))((A4A5)A6))
*/


































































































































