堆排序

堆排序是一种树形选择排序,是对直接选择排序的有效改进。

基本思想:

堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足

时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)。 若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。如:

(a)大顶堆序列:(96, 83,27,38,11,09)

  (b)  小顶堆序列:(12,36,24,85,47,30,53,91)

 

初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大)的元素。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序

因此,实现堆排序需解决两个问题: 1. 如何将n 个待排序的数建成堆; 2. 输出堆顶元素后,怎样调整剩余n-1 个元素,使其成为一个新堆。

首先讨论第二个问题:输出堆顶元素后,对剩余n-1元素重新建成堆的调整过程。 调整小顶堆的方法:

1)设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶((最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。

2)将根结点与左、右子树中较小元素的进行交换。

3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法 (2).

4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法 (2).

5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。

称这个自根结点到叶子结点的调整过程为筛选。如图:

再讨论对n 个元素初始建堆的过程。 建堆方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。

1)n 个结点的完全二叉树,则最后一个结点是第个结点的子树。

2)筛选从第个结点为根的子树开始,该子树成为堆。

3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。

如图建堆初始过程:无序序列:(49,38,65,97,76,13,27,49)                              

                             

 

 算法的实现:

从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

  1. void print(int a[], int n){  
  2.     for(int j= 0; j<n; j++){  
  3.         cout<<a[j] <<"  ";  
  4.     }  
  5.     cout<<endl;  
  6. }  
  7.   
  8.   
  9.   
  10. /** 
  11.  * 已知H[s…m]除了H[s] 外均满足堆的定义 
  12.  * 调整H[s],使其成为大顶堆.即将对第s个结点为根的子树筛选,  
  13.  * 
  14.  * @param H是待调整的堆数组 
  15.  * @param s是待调整的数组元素的位置 
  16.  * @param length是数组的长度 
  17.  * 
  18.  */  
  19. void HeapAdjust(int H[],int s, int length)  
  20. {  
  21.     int tmp  = H[s];  
  22.     int child = 2*s+1; //左孩子结点的位置。(i+1 为当前调整结点的右孩子结点的位置)  
  23.     while (child < length) {  
  24.         if(child+1 <length && H[child]<H[child+1]) { // 如果右孩子大于左孩子(找到比当前待调整结点大的孩子结点)  
  25.             ++child ;  
  26.         }  
  27.         if(H[s]<H[child]) {  // 如果较大的子结点大于父结点  
  28.             H[s] = H[child]; // 那么把较大的子结点往上移动,替换它的父结点  
  29.             s = child;       // 重新设置s ,即待调整的下一个结点的位置  
  30.             child = 2*s+1;  
  31.         }  else {            // 如果当前待调整结点大于它的左右孩子,则不需要调整,直接退出  
  32.              break;  
  33.         }  
  34.         H[s] = tmp;         // 当前待调整的结点放到比其大的孩子结点位置上  
  35.     }  
  36.     print(H,length);  
  37. }  
  38.   
  39.   
  40. /** 
  41.  * 初始堆进行调整 
  42.  * 将H[0..length-1]建成堆 
  43.  * 调整完之后第一个元素是序列的最小的元素 
  44.  */  
  45. void BuildingHeap(int H[], int length)  
  46. {   
  47.     //最后一个有孩子的节点的位置 i=  (length -1) / 2  
  48.     for (int i = (length -1) / 2 ; i >= 0; --i)  
  49.         HeapAdjust(H,i,length);  
  50. }  
  51. /** 
  52.  * 堆排序算法 
  53.  */  
  54. void HeapSort(int H[],int length)  
  55. {  
  56.     //初始堆  
  57.     BuildingHeap(H, length);  
  58.     //从最后一个元素开始对序列进行调整  
  59.     for (int i = length - 1; i > 0; --i)  
  60.     {  
  61.         //交换堆顶元素H[0]和堆中最后一个元素  
  62.         int temp = H[i]; H[i] = H[0]; H[0] = temp;  
  63.         //每次交换堆顶元素和堆中最后一个元素之后,都要对堆进行调整  
  64.         HeapAdjust(H,0,i);  
  65.   }  
  66. }   
  67.   
  68. int main(){  
  69.     int H[10] = {3,1,5,7,2,4,9,6,10,8};  
  70.     cout<<"初始值:";  
  71.     print(H,10);  
  72.     HeapSort(H,10);  
  73.     //selectSort(a, 8);  
  74.     cout<<"结果:";  
  75.     print(H,10);  
  76.   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值